

CHOLLA POWER PLANT BOTTOM ASH MONOFILL

Periodic Run-on And Run-off Control System Plan

October 2021 AECOM Project 60664605

Delivering a better world

Prepared for:

Arizona Public Service 400 North 5th Street Phoenix, AZ 85004

Prepared by:

AECOM 7720 North 16th Street, Suite 100 Phoenix, AZ 85020 aecom.com

Table of Contents

1.	Introduction	1
2.	Methodology	1
3.	2017–2021 Annual Inspection Reports	2
4.	2016 Plan – Review by Section	2
	4.1 "Overview"	2
	4.2 "§257.81 (a)(1)(2) Run-on and Run-off Controls for CCR Landfills"	2
	4.3 "§257.81 (b) Run-on and run-off controls for CCR landfills"	2
	4.4 "§257.81 (c)(1)(2)(3)(4)(5) Run-on and run-off controls for CCR landfills"	3
	4.5 "§257.81 (d) Run-on and run-off controls for CCR landfills"	3
5.	Recommended Additional Technical Investigations or Evaluations	3
6.	Conclusion	3
7.	Limitations	3
8.	Certification Statement	5

Attachment

Attachment A: AECOM, 2016, Cholla Power Plant, Bottom Ash Monofill, Run-on and Run-off Control System Plan, CH_RunOO_001_20161017, October 17, 2016.

1. Introduction

This periodic update to the Run-On and Run-Off Control System Plan for the Bottom Ash Monofill at Cholla Power Plant, operated by Arizona Public Service (APS), has been prepared in accordance with the requirements of Title 40 of the Code of Federal Regulations Part 257 (40 CFR 257) ("the Coal Combustion Residuals [CCR] Rule", or "the Rule") and the specific requirement of 40 CFR § 257.81(c)(4) that "(t)he owner or operator of the CCR unit must prepare periodic run-on and run-off control system plans required by paragraph (c)(1) of this section every five years."

2. Methodology

The methodology used to prepare this 2021 Update and Recertification of the Run-on and Runoff Control System Plan for the Bottom Ash Monofill at the Cholla Power Plant is for the certifying Qualified Professional Engineer (QPE) to:

- 1. Perform a documented review of the 5 years of annual inspection reports since 2016;
- 2. Perform a documented review of each major component of the contributing technical information from:
 - a. AECOM, 2016. Cholla Power Plant, Bottom Ash Monofill, Run-on and Run-off Control System Plan, CH_RunOO_001_20161017, October 17, 2016 (hereafter referred to as the "2016 Plan" and incorporated and referenced directly as Attachment A to this document).
- 3. Consider and document whether the 2016 Plan and its conclusions:
 - a. Meet the current reporting requirements of the Rule;
 - b. Reflect the current condition of the structure, as known to the QPE and documented in the annual inspections;
 - c. Are compromised by any identified issues of concern; and
 - d. Are consistent with the standard of care of professionals performing similar evaluations in this region of the country; and
- 4. Identify any additional analyses, investigations, inspections, and/or repairs that should be completed in order to complete this 2021 Recertification.

This report documents the results of these considerations, incorporates the 2016 Plan as an Appendix, identifies any additional technical investigation or evaluations (if needed), and presents an updated certification by the QPE.

3. 2017–2021 Annual Inspection Reports

Information relevant to the current adequacy and performance of the run-on and run-off control system were reviewed. No issues were identified during the review that would affect the performance of the system and its compliance, as described in the 2016 Plan, with the requirements of 40 CFR § 257.81(c)(5).

4. 2016 Plan – Review by Section

Other than as described in the remainder of this section, the details presented in this section of the 2016 Plan adequately represent current conditions and satisfy the requirements of the Rule.

4.1 "Overview"

The details presented in this section of the 2016 Plan adequately represent current conditions and satisfy the requirements of the Rule.

4.2 "§257.81 (a)(1)(2) Run-on and Run-off Controls for CCR Landfills"

The 2016 Plan presents the details of a control system to capture and convey the 24-hour, 100year off-site, run-on design storm event. The design storm exceeds the minimum (24-hour, 25year) event required by §257.81 (a)(1).

The review addressed the suitability of the hydrologic basis used for the 2016 Plan. The methods used to estimate the rainfall and losses were based on the Arizona Department of Transportation *Highway Drainage Design Manual* published 1993. A newer manual was released in 2007 that is similar to the original manual. In this application, the 1993 Manual is assessed to be conservative in that it did not account for a reduction in the C-value for smaller return events (such as the 25-year).

The details presented in this section of the 2016 Plan adequately represent current conditions and satisfy the requirements of the Rule.

4.3 "§257.81 (b) Run-on and run-off controls for CCR landfills"

The 2016 Plan presents the details of a control system to capture, convey, and store the 24hour, 25-year on-site, run-off design storm event as required by §257.81 (a)(2). As described in the 2016 Plan, there will be no discharge from the on-site retention basin.

The details presented in this section of the 2016 Plan adequately represent current conditions and satisfy the requirements of the Rule.

4.4 "§257.81 (c)(1)(2)(3)(4)(5) Run-on and run-off controls for CCR landfills"

The owner or operator continues to acknowledge and will comply with these requirements.

A certification of this Periodic Run-On and Run-Off Control Plan by a QPE is included in this document per the requirement of §257.81 (c)(5).

4.5 "§257.81 (d) Run-on and run-off controls for CCR landfills"

The owner or operator continues to acknowledge and will comply with these requirements.

5. Recommended Additional Technical Investigations or Evaluations

None identified and none recommended.

6. Conclusion

The 2016 Plan and its conclusions meet the current reporting requirements of the Rule, reflect the current condition of the structure as known to the QPE and documented in the annual inspections, are not compromised by any identified issues of concern, and are consistent with the standard of care of professionals performing similar evaluations in this region of the country.

7. Limitations

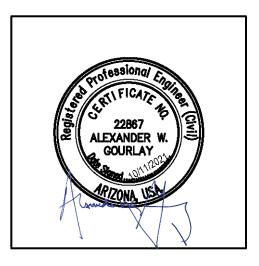
This document is for the sole use of APS on this project only and is not to be used for other projects. In the event that conclusions based upon the data presented in this document are made by others, such conclusions are the responsibility of others.

The Periodic Run-on And Run-off Control System Plan presented in this document is based on the 2016 Plan and relies and incorporates any Limitations expressed in that document.

The Certification of Professional Opinion in this report is limited to the information available to AECOM at the time this Assessment was performed in accordance with current practice and the standard of care. Standard of care is defined as the ordinary diligence exercised by fellow practitioners in this area performing the same services under similar circumstances during the same period. Professional judgments presented herein are primarily based on information from previous reports that have been assumed to be accurate, knowledge of the site, and partly on our general experience with dam safety evaluations performed on other dams.

No warranty or guarantee, either written or implied, is applicable to this work. The use of the word "certification" and/or "certify" in this document shall be interpreted and construed as a

Statement of Professional Opinion and is not and shall not be interpreted or construed as a guarantee, warranty, or legal opinion.


8. Certification Statement

Certification Statement for:

- Certification Statement 40 CFR § 257.81(c)(5) Periodic Run-on and Run-Off Control System Plan for an Existing CCR Landfill
- CCR Unit: Arizona Public Service; Cholla Power Plant; Bottom Ash Monofill

I, Alexander W. Gourlay, being a Registered Professional Engineer in good standing in the State of Arizona, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the information contained in this Periodic Run-On and Run-Off Control System Plan dated October 2021, including the technical content in Attachment A, meets the requirements of 40 CFR § 257.81.

<u>Alexander W. Gourlay, P.E.</u> Printed Name

October 11, 2021 Date

Attachment A:

AECOM, 2016. Cholla Power Plant, Bottom Ash Monofill, Run-on and Run-off Control System Plan, CH_RunOO_001_20161017, October 17, 2016.

ATTACHMENT A

AECOM, 2016. Cholla Power Plant, Bottom Ash Monofill, Run-on and Run-off Control System Plan, CH_RunOO_001_20161017, October 17, 2016.

CHOLLA POWER PLANT BOTTOM ASH MONOFILL RUN-ON AND RUN-OFF CONTROL SYSTEM PLAN CH_RunOO_001_20161017

This *Run-on and Run-off Control System Plan* (Plan) document has been prepared specifically for the Bottom Ash Monofill (BAM) at the Cholla Power Plant in accordance with our understanding of the requirements prescribed in §257.81(3)(i) of the Federal Register, Volume 80, Number 74, dated April 17, 2015 (U. S. Government, 2015) for run-on and run-off controls associated with existing Coal Combustion Residual (CCR) landfills. Section §257.81 from the Federal Register is reproduced below for reference purposes. This document serves as the initial run-on and run-off control system plan described in §257.81(3)(i).

The BAM is an existing CCR landfill facility. The location of the BAM is illustrated on Exhibit 1. Calculations prepared previously in support of the facility operation have been referenced and reproduced herein to address the requirements listed.

§257.81 Run-on and run-off controls for CCR landfills

(a) The owner or operator of an existing or new CCR landfill or any lateral expansion of a CCR landfill must design, construct, operate, and maintain:

(1) A run-on control system to prevent flow onto the active portion of the CCR unit during the peak discharge from a 24-hour, 25-year storm; and

(2) A run-off control system from the active portion of the CCR unit to collect and control at least the water volume resulting from a 24-hour, 25-year storm.

(b) Run-off from the active portion of the CCR unit must be handled in accordance with the surface water requirements under §257.3-3.

(c) Run-on and run-off control system plan -

(1) *Content of the plan.* The owner or operator must prepare initial and periodic run-on and run-off control system plans for the CCR unit according to the timeframes specified in paragraphs (c)(3) and (4) of this new section. These plans must document how the run-on and run-off control systems have been designed and constructed to meet the applicable requirements of this section. Each plan must be supported by the appropriate engineering calculations. The owner or operator has completed the initial run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by §257.105(g)(3).

(2) Amendment of the plan. The owner or operator may amend the written run-on and run-off control system plan at any time provided the revised plan is placed in the facility's operating record as required by §257.105(g)(3). The owner or operator must amend the written run-on and run-off control system plan whenever there is a change in conditions that would substantially affect the written plan in effect.

(3) Timeframes for preparing the initial plan -

(i) *Existing CCR landfills*. The owner or operator of the CCR unit must prepare the initial run-on and run-off control system plan no later than October 17, 2016.

(ii) *New CCR landfills and any lateral expansion of a CCR landfill.* The owner or operator must prepare the initial run-on and run-off control system plan no later than the date of initial receipt of CCR in the CCR unit.

(4) *Frequency for revising the plan.* The owner or operator of the CCR unit must prepare periodic run-on and run-off control system plans required by paragraph (c)(1) of this section every five years. The date of completing the initial plan is the basis for establishing the deadline to complete the first subsequent plan. The owner or operator may complete any required plan prior to the required deadline provided the owner or operator places the completed plan into the facility's operating record within a reasonable amount of time. In all cases, the deadline for completing a subsequent plan is based on the date of completing the previous plan. For purposes of this paragraph (c)(4), the owner or operator has completed a periodic run-on and run-off control system plan when the plan has been placed in the facility's operating record as required by §257.105(g)(3).

(5) The owner or operator must obtain a certification from a qualified professional engineer stating that the initial and periodic run-on and run-off control system plans meet the requirements of this section.

(d) The owner or operator of the CCR unit must comply with the record keeping requirements specified in §257.105(g), the notification requirements specified in §257.106(g), and the internet requirements specified in §257.107(g).

SITE INFORMATION	
Site Name / Address	Cholla Power Plant / 4801 Frontage Road, Joseph
	City, AZ 86032
Owner Name / Address	Arizona Public Service / 400 North 5 th Street,
	Phoenix, AZ 85004
CCR Unit	Bottom Ash Monofill (BAM)

OVERVIEW

The Bottom Ash Monofill (BAM) located at the Cholla Power Plant is an existing CCR landfill. Construction of the BAM began in the late 1990s. An offsite flow channel system that intercepts and conveys offsite storm water from a 98-acre contributing watershed with outfall to the south is located immediately upstream of the BAM.

This run-on / run-off control plan describes the existing controls that preclude run-on of offsite storm flows from the landfill and the run-off of onsite storm flows from the landfill. Run-on / run-off control systems that prevent flow onto and from active CCR units from a 24-hour, 25-year storm are required. An existing diversion channel located on the perimeter of the BAM was designed and constructed to collect and convey contributing offsite flows in order to fulfill this requirement.

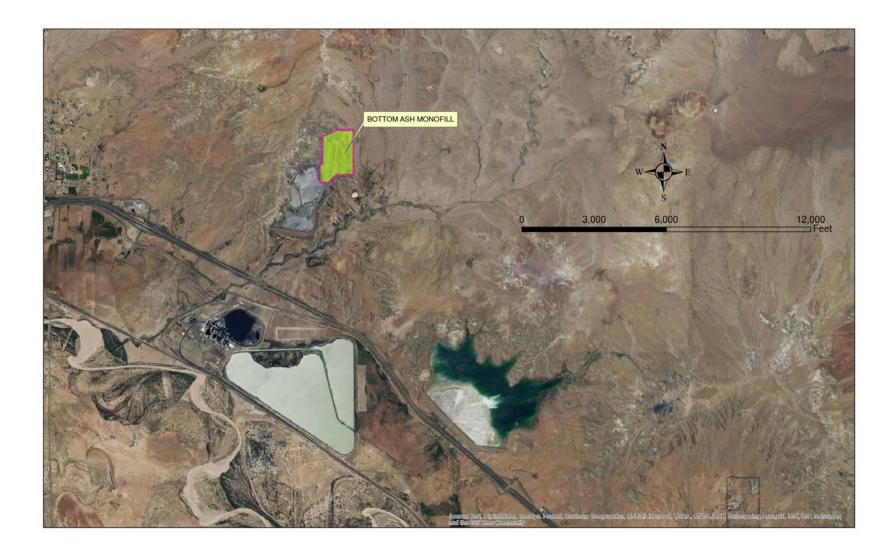


Exhibit 1 – Bottom Ash Monofill (BAM) at Cholla Power Plant Facility

§257.81 (a)(1)(2) Run-on and run-off controls for CO	CR landfills
(a) The owner or operator of an existing or new	An offsite flow collection system is constructed on
CCR landfill or any lateral expansion of a CCR	the upstream perimeter of the BAM. This system
landfill must design, construct, operate, and	captures and conveys the 24-hour, 100-year offsite
maintain:	/ run-on flows produced by the 98-acre offsite
(1) A run-on control system to prevent flow onto	watershed around the project site and toward one
the active portion of the CCR unit during the peak	of three historic discharge points. The historic
discharge from a 24-hour, 25-year storm;	outfall discharge points have been maintained
	with the use of undersized culverts placed within
	the offsite flow channel that allow excess flow to
	overtop the channel at historic discharge points as
	shown on the Cholla Generating Station, Ash
	Monofill APP Plan (URS 2009 A). This 100-year
	storm magnitude design exceeds the 24-hour, 25-
	year requirement shown in §257.81(a)(1). The
	Cholla Generating Station, Ash Monofill APP Plan
	is included in Appendix 1.
	Estimates of the 24-hour, 100-year run-on peak
	flows captured and conveyed within the perimeter
	channel system are based on the Cholla Power
	Plant, Ash Monofill Drainage Study, Preliminary
	Drainage Report (URS 2009 B). The 24-hour, 100-
	year offsite peak flows were estimated with the
	use of the rational method of hydrology for three
	offsite drainage areas identified below:
	 OFF1: 23.8 cfs
	 OFF2: 50.7 cfs
	 OFF3: 60.9 cfs
	These 24-hour, 100-year run-on peak flows to the
	BAM Site are intercepted and conveyed in a
	trapezoidal channel system characterized by seven
	sections. The sections include a 10-foot bottom
	width, 2.5H: 1V side slopes, maximum channel
	depth of 5 feet, longitudinal slope ranging from
	0.5% to 1.04%, and riprap erosion protection
	lining. The trapezoidal channel segment design
	and conveyance characteristics by Channel Section

	include the following:				
	Peak Flows:				
	 Channel Section 1: 25 cfs 				
	 Channel Section 2: 80 cfs 				
	 Channel Section 3: 140 cfs 				
	 Channel Section 4: 150 cfs 				
	 Channel Section 5: 80 cfs 				
	 Channel Section 6: 80 cfs 				
	 Channel Section 7: 25 cfs 				
	 Longitudinal Slope: 				
	 Channel Section 1: 0.0089 ft/ft 				
	 Channel Section 2: 0.0104 ft/ft 				
	 Channel Section 3: 0.0050 ft/ft 				
	 Channel Section 4: 0.0100 ft/ft 				
	 Channel Section 5: 0.0100 ft/ft 				
	 Channel Section 6: 0.0100 ft/ft 				
	 Channel Section 7: 0.0050 ft/ft 				
	 Normal Depth: 				
	 Channel Section 1: 0.73 feet 				
	 Channel Section 2: 1.35 feet 				
	 Channel Section 3: 2.22 feet 				
	 Channel Section 4: 1.91 feet 				
	 Channel Section 5: 1.36 feet 				
	 Channel Section 6: 1.36 feet 				
	 Channel Section 7: 0.86 feet 				
	The normal depth calculations for the offsite flow				
	channel system, developed as part of the Cholla				
	Power Plant, Ash Monofill Drainage Study,				
	Preliminary Drainage Report (URS 2009 B) are				
	included in Appendix 2.				
(a) The owner or operator of an existing or new	An existing onsite storage basin located at the				
CCR landfill or any lateral expansion of a CCR	BAM landfill facility is designed to collect the				
landfill must design, construct, operate, and	onsite runoff volume generated by a 25-year, 24-				
maintain:	hour storm which is estimated to be 5.2 acre-feet.				
(2) A run-off control system from the active	The BAM yields a total 25-year, 24-hour storm				
portion of the CCR unit to collect and control at	water runoff volume of 5.23 acre-feet from the				

least the water volume resulting from a 24-hour,	onsite portion of the BAM based on the following
25-year storm.	parameters:
	 Surface Area: 47.2 acres Runoff Coefficient: 0.60 25-year, 24-hour Precipitation Depth: 2.22 inches
	The Cholla Power Plant, Ash Monofill Drainage
	Study, Preliminary Drainage Report, dated
	February 2009 indicates that the onsite storm
	water storage basin adjacent to the BAM provides a volume of 8.3 acre-feet at a depth of 12-feet and a surface area of 1.04 acres. This exceeds the 25- year, 24-hour storm water runoff volume of 5.23 acre-feet. The additional volume provided may accommodate sediment in addition to surface water resulting from dust control activities and compaction efforts.
	The storm water runoff and storage volume capacity calculations are included in Appendix 2.
§257.81 (b) Run-on and run-off controls for CCR lan	dfills
(b) Run-off from the active portion of the CCR unit	Onsite 25-year, 24-hour storm water runoff
must be handled in accordance with the surface	produced from the BAM Site is accommodated by
water requirements under §257.3-3.	a storm water storage basin contiguous to the BAM and does not discharge into waters of the United States.
§257.81 (c)(1)(2)(3)(4)(5) Run-on and run-off contro	ls for CCR landfills
(c)(1) Content of the plan. The owner or operator	This Run-on and Run-off Control System Plan
must prepare initial and periodic run-on and run-	serves as the initial plan prescribed herein.
off control system plans for the CCR unit according	
to the timeframes specified in paragraphs (c)(3)	
and (4) of this section. These plans must	
document how the run-on and run-off control	
systems have been designed and constructed to	
meet the applicable requirements of this section.	
Each plan must be supported by appropriate	

owner or operator acknowledges and will
ply with this requirement.
· · ·
BAM is an existing CCR landfill at Cholla Power
it. The run-on and run-off control system plan
escribed and included herein.
owner or operator acknowledges and will
ply with this requirement.
owner or operator acknowledges and will
ply with this requirement.

plan is based on the date of completing the	
previous plan. For purposes of this paragraph	
(c)(4), the owner or operator has completed a	
periodic run-on and run-off control system plan	
when the plan has been placed in the facility's	
operating record as required by §257.105(g)(3).	
(c)(5) The owner or operator must obtain a	Certification by a professional engineer is included
certification from a qualified professional engineer	as an attachment to this document.
stating that the initial and periodic run-on and run-	
off control system plans meet the requirements of	
this section.	
§257.81 (d) Run-on and run-off controls for CCR lan	dfills
(d) The owner or operator of the CCR unit must	The owner or operator acknowledges and will
comply with the recordkeeping requirements	comply with this requirement.
specified in §257.105(g), the notification	
requirements specified in §257.106(g), and the	
internet requirements specified in §257.107(g).	

References

U. S. Government, April 17, 2015, Federal Register, Volume 80, Number 74.

URS Corporation, February 2009, Cholla Generating Station, Ash Monofill APP.

URS Corporation, February 2009, *Cholla Power Plant, Ash Monofill Drainage Study, Preliminary Drainage Report.*

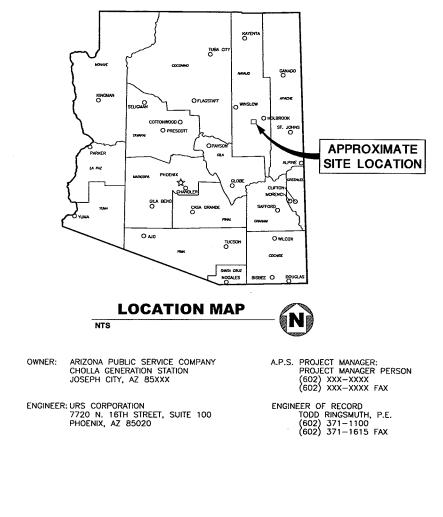
Certification Statement 40 CFR § 257.81(c)(5) – Initial Run-on and Run-Off Control System Plan for an Existing CCR Landfill

CCR Unit: Arizona Public Service; Cholla Power Plant; Bottom Ash Monofill

I, Alexander W. Gourlay, being a Registered Professional Engineer in good standing in the State of Arizona, do hereby certify, to the best of my knowledge, information, and belief, that the information contained in this certification has been prepared in accordance with the accepted practice of engineering. I certify, for the above-referenced CCR Unit, that the information contained in the initial run-on and run-off control system plan dated August, 31, 2016 meets the requirements of 40 CFR § 257.81.

Alexander W. Gourlay, P.E.

Printed Name


August 31, 2016

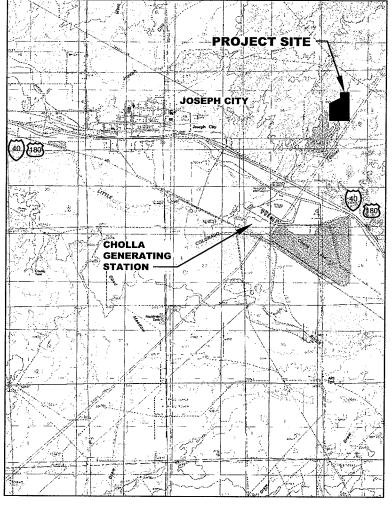
Date

APPENDIX 1 – CHOLLA GENERATING STATION, ASH MONOFILL APP PLAN

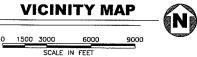
ARIZONA PUBLIC SERVICE CHOLLA GENERATING STATION CHOLLA ASH MONOFILL APP JOSEPH CITY, ARIZONA

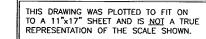
F

D


C

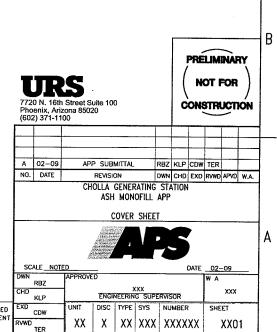
В

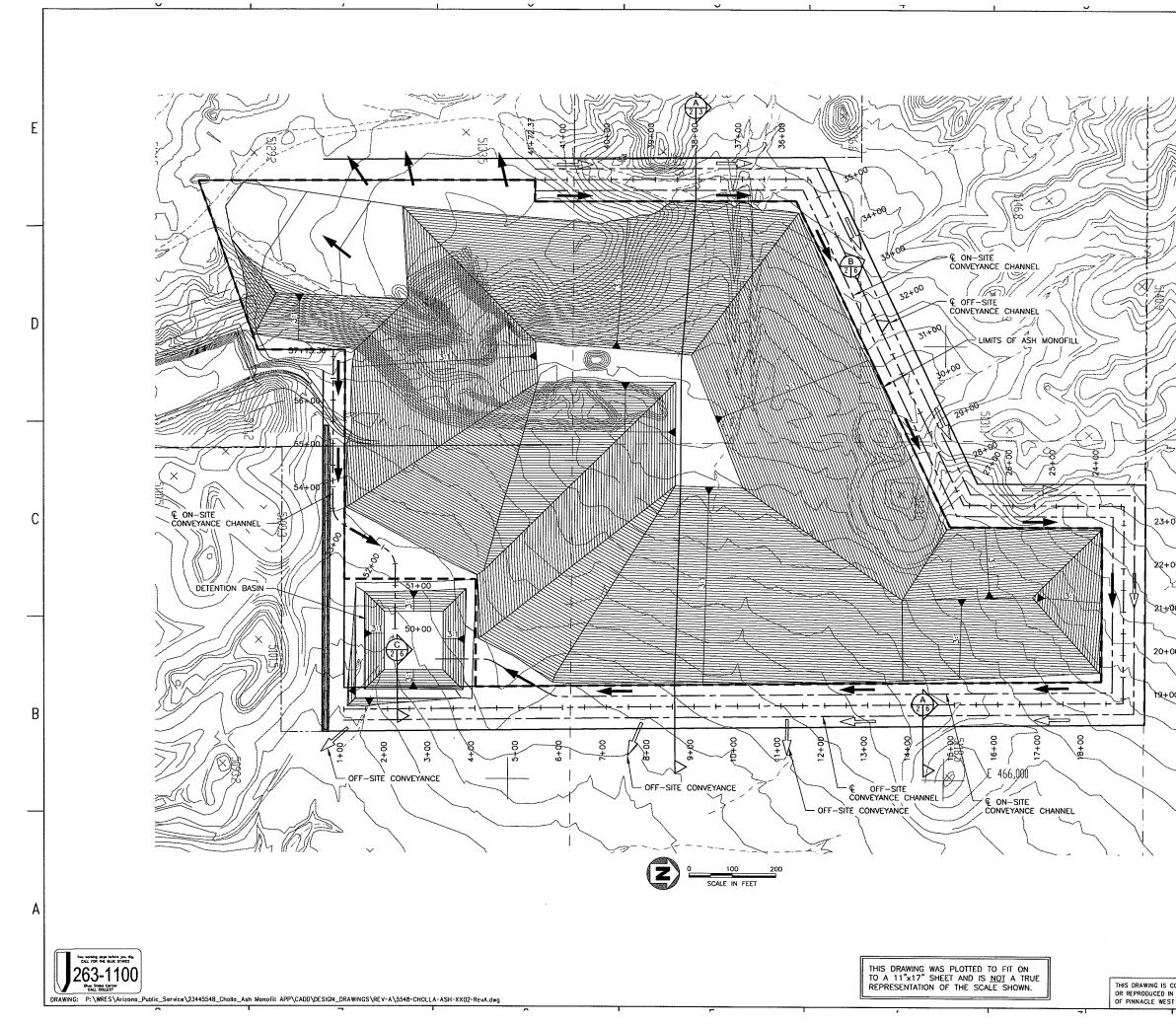

Α


Two marking days before you dig. CALL FOR THE BLUE STAKES

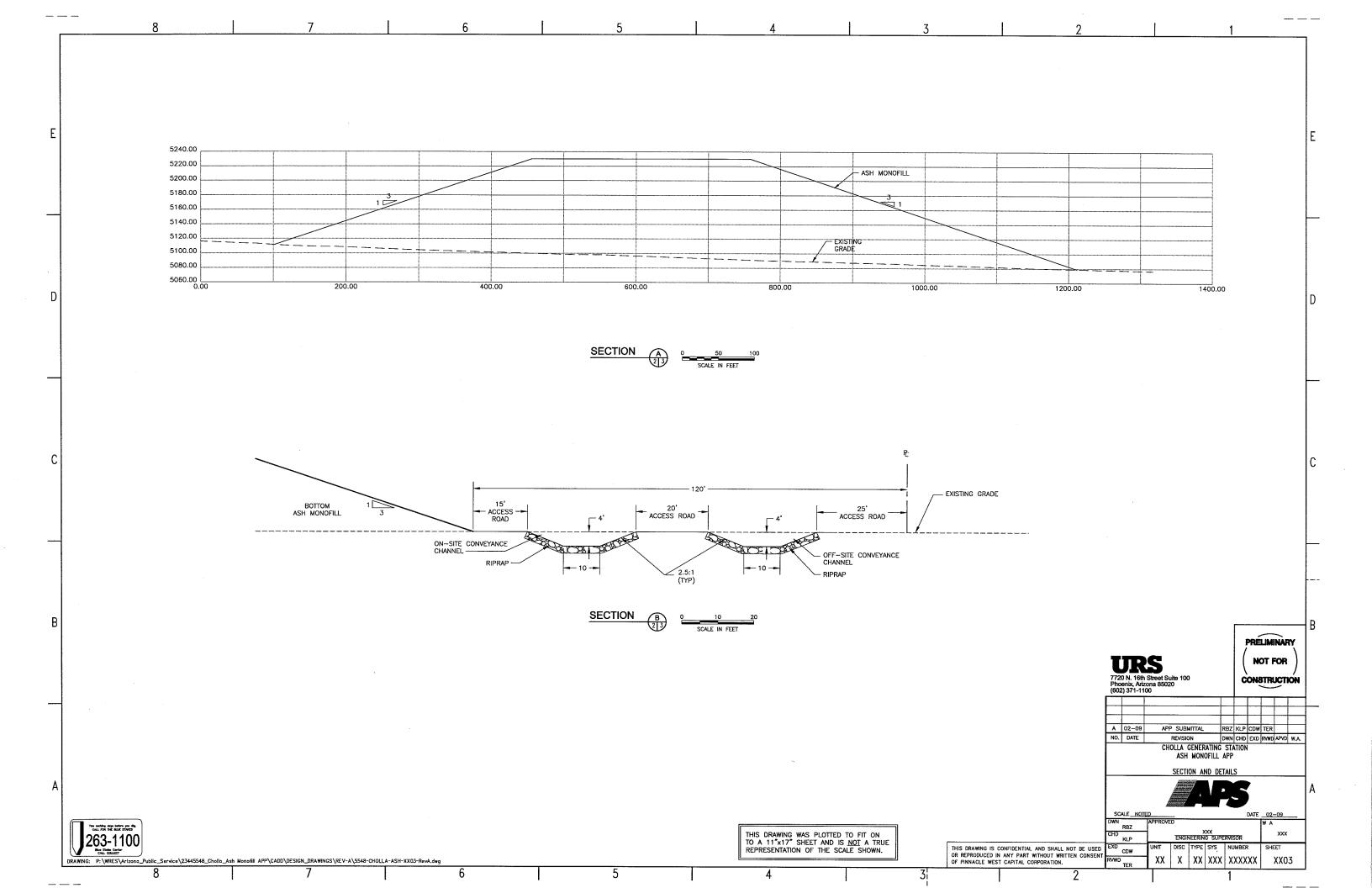
263-1100

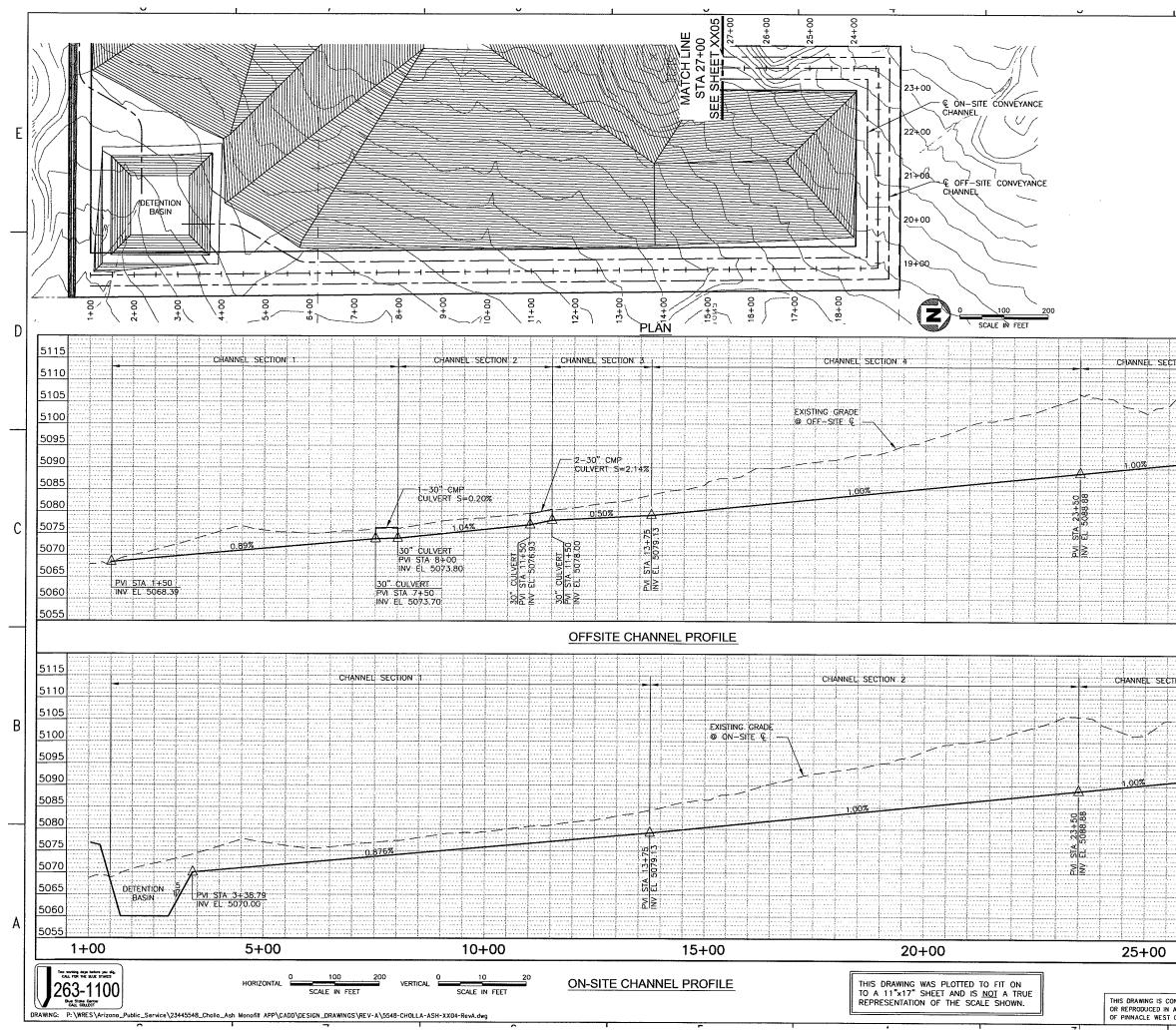
DRAWING 5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-



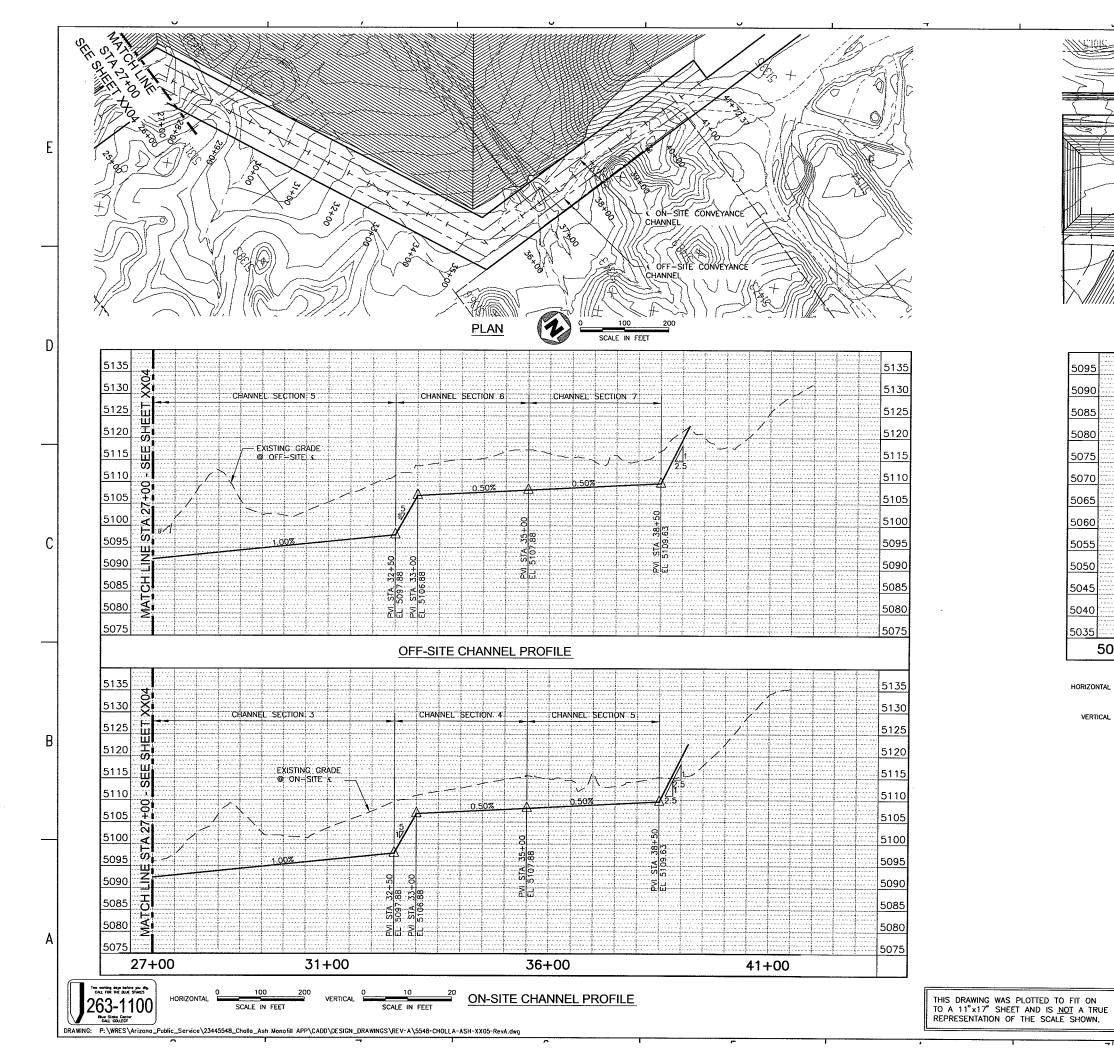

DRAWING INDEX

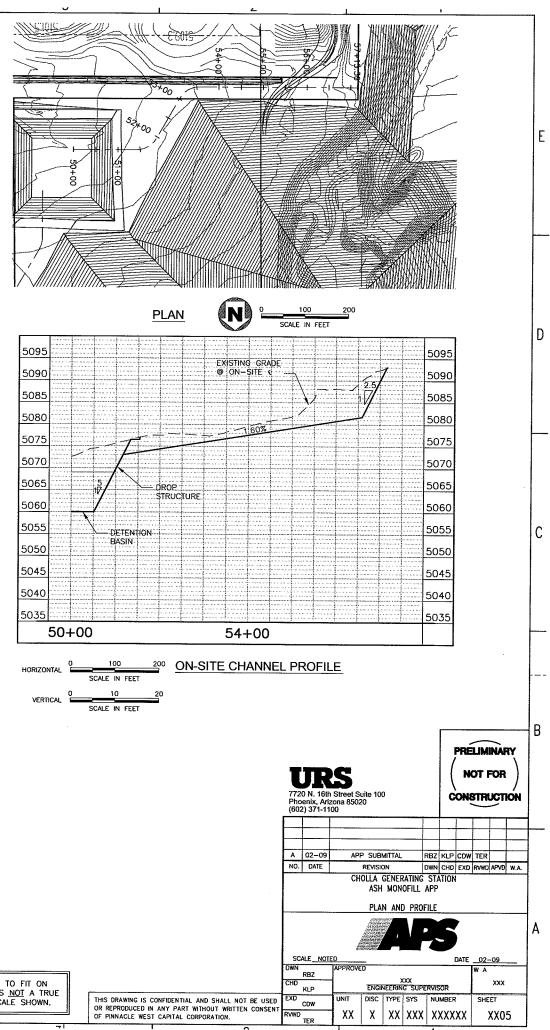
NO.	REV.	DRAWING TITLE
ASH-XX01	Α	COVER SHEET
ASH-XX02	Α	GENERAL SITE PLAN
ASH-XX03	А	SECTION AND DETAILS
ASH-XX04	А	PLAN AND PROFILES
ASH-XX05	А	PLAN AND PROFILES
ASH-XX06	А	SECTION AND DETAILS

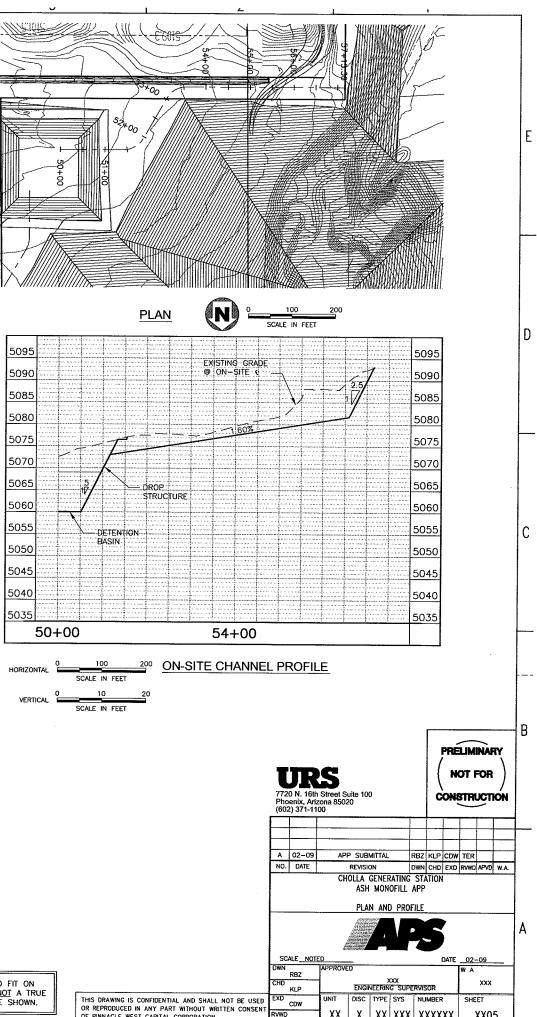


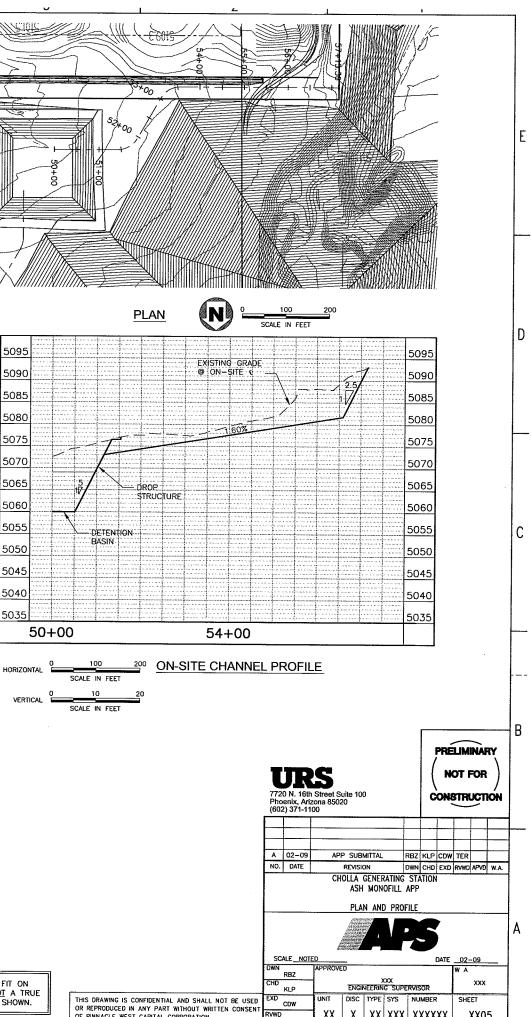

F

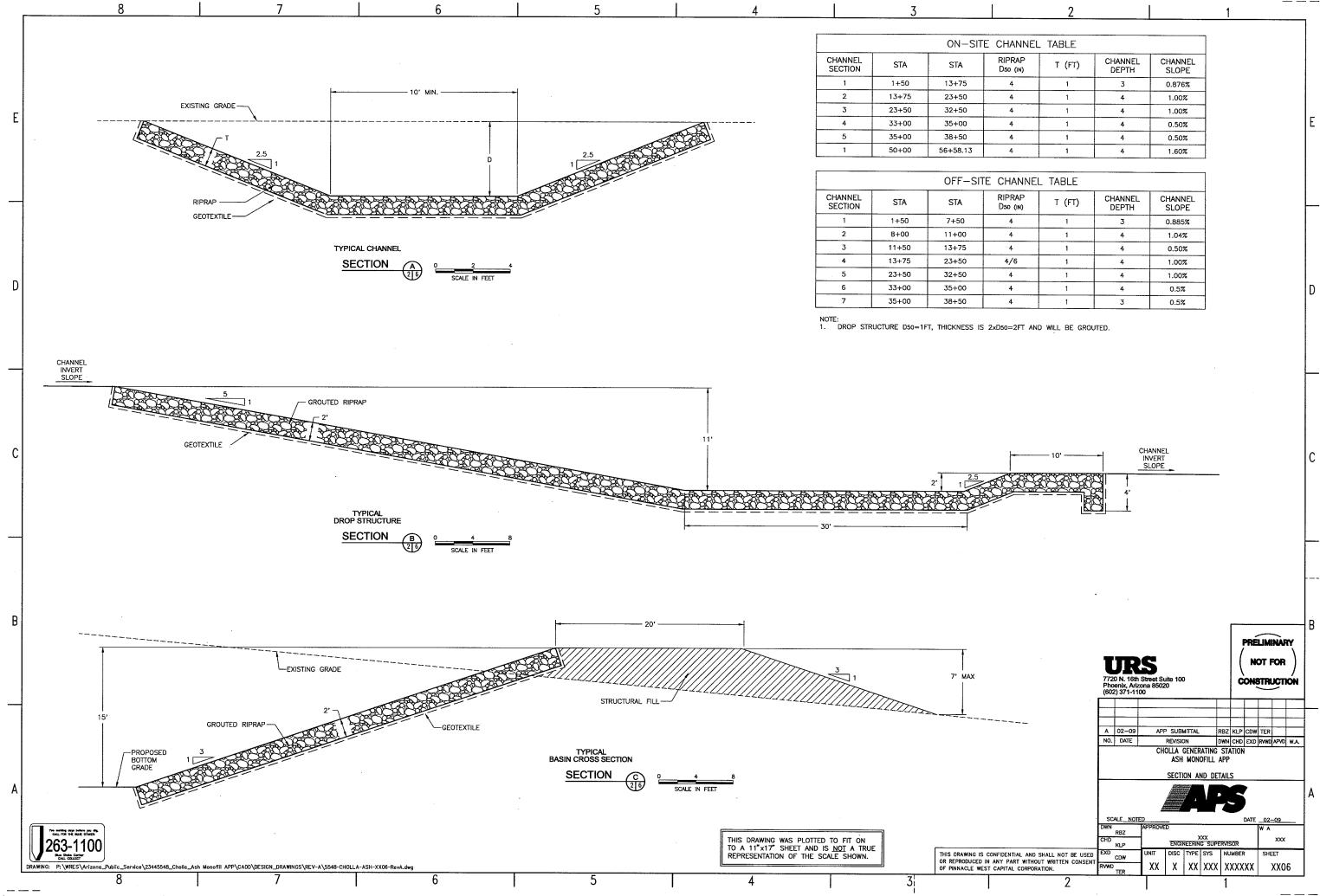
THIS DRAWING IS CONFIDENTIAL AND SHALL NOT BE USED OR REPRODUCED IN ANY PART WITHOUT WRITTEN CONSENT OF PINNACLE WEST CAPITAL CORPORATION.


<u>_</u>		J.			ı		_
							E
Ê M (C							
and the second							
ALCO ALCO							
S71							D
00							C
00 7 //							
524							
00							
00							
00							
							В
	TTO				1	LIMINARY OT FOR	
\sum_{i}	7720 N. 16#	Street Su	iite 100 n			STRUCTION	
	Phoenix, An (602) 371-11	00					
$\left\{ \right.$	A 02-09	APP	SUBMIT	AI F	BZ KLP COW	TER	
v	NO. DATE		revision DLLA GEN	C IERATING	WN CHD EXD	RVWD APVD W.A.	
		-		onofill <i>i</i> Il site pi			
		4			K		A
	SCALE NOT	ED APPROVEI			DATE	0209	
······	RBZ CHD KLP		ENGINEEI	XXX RING SUPE		W A XXX	
CONFIDENTIAL AND SHALL NOT BE USED IN ANY PART WITHOUT WRITTEN CONSENT ST CAPITAL CORPORATION.	EXD CDW RVWD TER	XX		pe sys X XXX	NUMBER XXXXXXX	sheet XX02	
T^		 -			4	••••••	






				5115]													D
CTION			X05	5110														
/	$\sum_{i=1}^{n}$		Ê	5105														
	· · · · · ·	N,	E H H H H S H	5100														
			Ш	5095														\vdash
			<u>v</u>	5090														
k				5085														
			NE STA 27	5080														
			S T	5075														С
				5070														
			CHI	5065														
			AAT A	5060														
				5055														
																		\vdash
				5115														
CTION	3		XX05	5110														
			×	5105														
N			Ш	5100									_					В
	`		ы С	5095										RÉ	LIM	NAF	٩Y	
			- SE	5090		T	TR	S					(N	DT F	OR		
			0 4	5085		Pho	enix, Ariz	Street S zona 8502	uite 100 20	0			°	ONS	TRL	СП	/ ION	
			A 27	5080		(602	2) 371-11	00			-							
			ST/	5075														
			л П	5070		A NO.	02-09 Date	AP	P SUBI REVISIO					CDW EXD	ter Rvwd	APVD	W.A.	
		· · · · · · ·	Н Н	5065				СН	OLLA ASH		RATING OFILL		TION					
			1ATC	5060					PLA	n ani) prof	FILE						
			2	5055						Ϊ,			5	•				A
		27+	-00				LE <u>NOT</u>							DATE		-09		
						DWN	RBZ	APPROVE		,	xx				WA	xxx		
ONFIDE	NTIAI	AND SH		OT BE US	FD	EXD	KLP	UNIT	ENGI	TYPE	G SUPE		OR MBER	_	SHE			
ANY I		ITHOUT	WRITT	EN CONSE		RVWD	TER	ХХ	X	ХХ			XXX			(XO	4	
				~				1				4						-


E

	2			1
				1
E CHANNEL	_ IABLE			
RIPRAP D50 (in)	T (FT)	CHANNEL DEPTH	CHANNEL SLOPE	
4	1	3	0.876%	
4	1	4	1.00%	
4	1	4	1.00%	
4	1	4	0.50%	
4	1	4	0.50%	
4	1	4	1.60%	
E CHANNEI	L TABLE			-
RIPRAP D50 (in)	т (FT)	CHANNEL DEPTH	CHANNEL SLOPE	
4	1	3	0.885%	
4	1	4	1.04%	
4	1	4	0.50%	
4/6	1	4	1.00%	
4	1	4	1.00%	
4	1	4	0.5%	

APPENDIX 2 - CHOLLA POWER PLANT, ASH MONOFILL DRAINAGE STUDY, PRELIMINARY DRAINAGE REPORT

CHOLLA POWER PLANT ASH MONOFILL DRAINAGE STUDY PRELIMINARY DRAINAGE REPORT

Prepared for NAVAJO COUNTY

URS Job No. 23445548 February 2009

Cholla Power Plant - Ash Monofill

Drainage Study

Preliminary Drainage Report

Prepared for:

Navajo County

This report is based on data, site conditions and other information that are generally applicable as of 2009, and the conclusions and recommendations herein are therefore applicable only to that period.

This report is preliminary and is not to be used as the sole basis for final design or for construction or as a basis for major capital decisions. Further analysis of the study area should be performed prior to any designs or decisions.

Cholla Power Plant Ash Monofill Drainage Study

February 2009

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTION	3
	1.1	SITE LOCATION AND DESCRIPTION	3
2.0	FEDE	ERAL EMERGENCY MANAGEMENT AGENCY FLOODPLAIN	
	CLAS	SSIFICATION	3
3.0	HYD	ROLOGY	3
	3.1	METHODOLOGY	3
	3.2	TOPOGRAPHY	
	3.3	SOILS	4
	3.4	HYDROLOGIC MODELING PARAMETERS	4
		3.4.1 Rainfall	4
		3.4.2 Drainage Areas	5
		3.4.3 Rational Coefficient	5
		3.4.4 Time of Concentration	
	3.5	HYDROLOGIC MODELING RESULTS	6
4.0	DRA	INAGE DESIGN	8
	4.1	OFFSITE COLLECTION SYSTEM	8
		4.1.1 Offsite Perimeter Channel	
		4.1.2 Historic Outflow Points	8
	4.2	ONSITE COLLECTION SYSTEM	8
		4.2.1 Onsite Channels	9
		4.2.2 Onsite Storage Basin	9
	4.3	CONCLUSIONS	
5.0	REFE	ERENCES	10

LIST OF TABLES

Table 1Time of Concentration CalculationsTable 2Peak Discharge Summary Table

LIST OF FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Site Location Map
- Figure 3 Effective Flood Insurance Rate Map
- Figure 4 Existing Condition Drainage Map
- Figure 5 Developed Condition Drainage Map
- Figure 6 Channel Offset Locations

LIST OF DRAINAGE DRAWINGS

- Drawing 1 Cover Sheet
- Drawing 2 General Site Plan
- Drawing 3 Section and Details
- Drawing 4 Plan and Profiles
- Drawing 5 Plan and Profiles
- Drawing 6 Section and Details

LIST OF APPENDICES

- Appendix A Rainfall
- Appendix B Hydrology Calculations
- Appendix C Hydraulic Calculations

1.0 INTRODUCTION

This drainage report presents the hydrologic and hydraulic analysis completed for the proposed expansion to the Cholla Generating Station Ash Monofill for the Arizona Public Service (APS). This report will be included as a portion of the revised Aquifer Protection Permit that will be submitted to the Arizona Department of Environmental Quality (ADEQ). The purpose of this analysis was to calculate the pre-development and post-development flows to ensure the proposed design would not increase historic flow amounts and discharge points.

1.1 SITE LOCATION AND DESCRIPTION

The Ash Monofill area is in eastern Arizona located on the Arizona Public Service (APS) Cholla Generating Station property, approximately 2.5 miles east of the town of Joseph City, Arizona, as shown in Figure 1. The site covers approximately 50 acres and is north of Interstate 40. The study area encompasses all of the off-site drainage areas for the proposed Ash Monofill, which covers approximately 100 acres.

2.0 FEDERAL EMERGENCY MANAGEMENT AGENCY FLOODPLAIN CLASSIFICATION

The project site is located in the flood hazard area represented by Zone X of the National Flood Insurance Program, based on Flood Insurance Rate Map Number 04017C3308E and 04017C3310E, revised September 26, 2008 (see Figure 3). The Zone X classification indicates the following:

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1-foot with drainage area less than one square mile.

3.0 HYDROLOGY

3.1 METHODOLOGY

The hydrologic analysis for the Ash Monofill site was computed using the Rational Method based on the *Arizona Department of Transportation Highway Drainage Design Manual, Hydrology (ADOT Drainage Manual)* (ADOT 1993). This methodology can be used to estimate peak discharges and runoff volumes for small, uniform drainage areas that are less than 160 acres

in size. The largest existing or developed drainage basin for this proposed expansion project is approximately 60 acres, which is much less than the 160 acre maximum threshold. The peak discharges and runoff volumes were used to design the offsite and onsite collection system. The topographic and soil data information were collected to assist in the analysis.

3.2 TOPOGRAPHY

Topography was provided by APS at 2-foot contour intervals and by United Stated Geological Survey's topographic maps at 5-foot contour intervals. All topographic data was generated in North American Vertical Datum (NAVD) 1988 for the vertical dimension and in North American Datum 1983, Arizona State Plane East, for the horizontal. The combined survey data were used as guidance for delineating drainage basins (see Figure 4).

3.3 SOILS

Soil data was obtained from the Natural Resources Conservation Service (NRCS) online soil survey site (NRCS 2008). There are two existing soil types in the vicinity of the proposed development. The first soil is Gypsiorthids-Torriothents, 5 to 60 percent slopes and the second soil is Brunswick Sandy Clay Loam, 1 to 5 percent slopes. The two soils belong to Hydrologic Soil Group B and this information was used to determine coefficient values for the Rational Method calculations. This information has been included in Appendix B.

3.4 HYDROLOGIC MODELING PARAMETERS

The *ADOT Drainage Manual* was used to determine the hydrologic parameters to be used in the Rational Method. A detailed discussion of the hydrologic parameter calculations is provided in the following sections.

3.4.1 Rainfall

The 100-year, 24-hour storm event was used as the design storm for the offsite collection system and the 25-year, 24-hour storm was used for the onsite collection system and retention basin. These are the design storms specified for use by ADEQ. The rainfall depths were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (NOAA 2008). This information was used to create a site-specific intensity-duration-frequency (I-D-F) curve that was used in the Rational Method. The 100-year, 24-hour rainfall amount used in the analysis is 2.77 inches and the 25-year, 24-hour rainfall is 2.22 inches. The rainfall information and I-D-F calculation is included in Appendix A.

3.4.2 Drainage Areas

The existing drainage area basin boundaries for the study area are shown in Figure 4. The watershed delineations were performed using the 2-foot and 5-foot contours. The existing information was used to determine the pre-development discharges and historic outfall locations. The design of the proposed expansion will maintain the historic outfall locations and will ensure the post-development flows are below the pre-development flows.

The post-development drainage areas were delineated based on the proposed improvements within the APS property. The post-development drainage basins are shown on Figure 5. The onsite basins will be conveyed by channels to a retention basin and the offsite basins will be routed around the property to their historic outfall locations.

3.4.3 Rational Coefficient

The rational coefficients were selected based on the land use and vegetation cover using Figure 2-5 from the *ADOT Drainage Manual* (ADOT 1993). The study area was considered to be Upland Rangeland with a vegetation cover of approximately 10 percent. The soil in the vicinity of the project site belongs to the Hydrologic Soil Type B. Based on this information, the study area was considered to have a rational coefficient of 0.30 for existing conditions. The soil that will be used for the landfill cover will be a clay soil with little or no vegetation. This soil type was selected to minimize rainfall infiltratration into the landfill and will have a rational coefficient of 0.60. This information has been included in Appendix B.

3.4.4 Time of Concentration

The time of concentrations for each of the sub-basins was calculated based on Equation 2-2, below, and following parameters from the Rational Method in the *ADOT Drainage Manual* (ADOT 1993):

$$T_c = 11.4L^{0.5}K_b^{0.52}S^{-0.31}i^{-0.38}$$

Where $T_c = time$ of concentration in hours

L = length of the longest flow path in feet per mile

 K_b = watershed resistance coefficient

S= slope of the longest flow path in feet per mile

i = average rainfall intensity, in inches per hour, for a duration of rainfall equal to T_c , unless T_c is less than 10 minutes, in which case (i) is for a 10-minute duration

A summary of the time of concentration is provided in Table 1 below and in Appendix B.

Table 1

Sub-Basin	L (miles)	Area (ac)	H (feet) (change in elevation along L)	S (feet/mile)	i (inches/ hour)	T _c (min)
OFF-1 (Pre-Development)	0.56	39.6	129.0	229.9	4.60	16
OFF-2 (Pre-Development)	0.63	49.3	135.0	215.4	4.30	18
OFF-3 (Pre-Development)	0.85	59.7	166.0	194.9	3.80	22
OFF-1 (Post-Development)	0.26	14.1	71.0	276.3	5.73	10
OFF-2 (Post-Development)	0.39	34.4	92.0	234.0	5.00	13
OFF-3 (Post-Development)	0.66	49.2	126.0	189.8	4.20	19
ON-4	0.16	8.9	144.0	928.6	4.48	10
ON-5	0.12	13.7	127.0	1065.4	4.48	10
ON-6	0.16	19.9	153.0	967.5	4.48	10
ON-7	0.09	4.7	112.0	1246.0	4.48	10

Time of Concentration Summary¹

SOURCE: Arizona Department of Transportation 1993

NOTE: ¹ Based on the Arizona Department of Transportation Highway Drainage Design Manual, Hydrology, Equation 2-2, Time of Concentration Estimation

3.5 HYDROLOGIC MODELING RESULTS

The Rational Method model provides the 100-year, 24-hour peak discharges for the offsite basins and the 25-year, 24-hour peak discharges for the onsite drainage basin. The hydrology calculations and Rational Method model are provided in Appendix B, along with the total volume of runoff calculated for each on-site drainage basin. The peak discharge summary is provided Table 2 and in Appendix B. This table confirms that the existing peak flow amounts for basin OFF-1, OFF-2, and OFF-3 will be decreased in the developed condition. The on-site runoff volume is shown in Table 3.

Sub-Basin	Rainfall	Area (acre)	Peak Discharge (cubic feet per second)
OFF-1 (Pre-Development)	100-yr, 24-hour	39.6	54
OFF-2 (Pre-Development)	100-yr, 24-hour	49.3	63
OFF-3 (Pre-Development)	100-yr, 24-hour	59.7	67
OFF-1 (Post-Development)	100-yr, 24-hour	14.1	24
OFF-2 (Post-Development)	100-yr, 24-hour	34.4	51
OFF-3 (Post-Development)	100-yr, 24-hour	49.2	61
ON-4	25-year, 24-hour	8.9	24
ON-5	25-year, 24-hour	13.7	37
ON-6	25-year, 24-hour	19.9	54
ON-7	25-year, 24-hour	4.7	13

Table 2Peak Discharge Summary Table

Table 3

Volume Summary Table

Sub-Basin	P (inches)	Area (acres)	С	Volume (acre-feet)
ON-4	2.22	8.9	0.60	0.99
ON-5	2.22	13.7	0.60	1.52
ON-6	2.22	19.9	0.60	2.21
ON-7	2.22	4.7	0.60	0.52
	Total Volume:			

NOTES: P = 25-year, 24-hour rainfall event; C = rational coefficient

4.0 DRAINAGE DESIGN

4.1 OFFSITE COLLECTION SYSTEM

The offsite collection system was designed to capture the offsite flows and route them around the proposed improvements to their historic outlet points. There are three historic outfall points for the existing drainage basins, which are displayed on Figure 4. The offsite collection system consists of rip-rap lined channels, culverts, weirs, and a drop structure.

4.1.1 Offsite Perimeter Channel

The offsite perimeter channel is located within the APS property adjacent to the property line. It has a 10-foot bottom width with 2 $\frac{1}{2}$ to 1 side slopes (H:V). URS field investigation of the proposed site revealed evidence of scour and sediment deposits in existing collection channels due to the nature of the contributing soils. The size and depth of the proposed perimeter channel is small enough that rip-rap can be used for the entire channel cross sectional area. The sizing calculations for the rip-rap channel are located in Appendix C.

The perimeter channel consists of seven sections based on the offsite inflow and historic outflow locations. The normal depth calculations for the channel sections are located in Appendix C. A drop structure along the channel alignment is necessary because the channel was designed to minimize the amount of excavation. The elevation drops nine feet in this structure over a length of fifty feet. The calculation for this drop structure is included in Appendix C.

4.1.2 Historic Outflow Points

Offsite flows in the channels will outlet at the historic outflow locations and the peak flow at these locations will be maintained. Due to the topography of the area, the proposed site layout, and the location of the historic outfalls, culverts were placed in the channel. These culverts reduce the flow in the downstream channel section by allowing excess flows to overtop the channel on the east side maintaining the historic outfall location. A lateral weir is located on the east bank of the channel which allows flow to overtop the channel section. The design of the culverts and weir is located in Appendix C.

4.2 ONSITE COLLECTION SYSTEM

The onsite collection system was designed based on the ultimate developed condition. This design parameter was selected because the peak flows and volumes would be maximized, resulting in a conservative design that eliminates the necessity of an interim design and

construction. The onsite collection system consists of channels, drop structures, and a storage basin. There is a portion of the project site within the proposed improvements that will not drain into the onsite collection system, but will be collected by an existing pond located south of this project.

4.2.1 Onsite Channels

The layout of the onsite channel system parallels the offsite collection system and is shown on Figure 5. The offsite and onsite channels were aligned based on the offset from landfill as well as the property line, which is shown on Figure 6. The onsite channel system will collect and convey the runoff from the 25-year, 24-hour storm to the storage basin located in the southeast corner of the project site. The channel alignments near the onsite storage basin were modified so that they would not flow into the basin at the corners. The channels will empty into the storage basin thru drop structures and a stilling basin. The stilling basin will protect the storage basin floor by dissipating the flow energy from the drop structure. The hydraulic design calculations are included in Appendix C.

4.2.2 Onsite Storage Basin

The onsite storage basin was designed to collect the runoff volume generated by a 25-year, 24-hour storm. That volume is shown in Table 3 as 5.2 acre-feet. The basin depth was increased by 2-feet to account for sediment and the basin will have 2-feet of freeboard. The overall proposed depth of the basin is 12-feet with 3 to 1 side slopes (H:V). An overflow spillway is located on the east side of the basin that will allow the basin to overtop during storms greater than the 25-year, 24-hour storm. The actual storage volume provided by the basin is 8.2 acre-feet. That calculation is provided in Appendix C. Any runoff volume collected in this storage basin will be pumped within 36-hours to the existing pond located south of the project site.

4.3 CONCLUSIONS

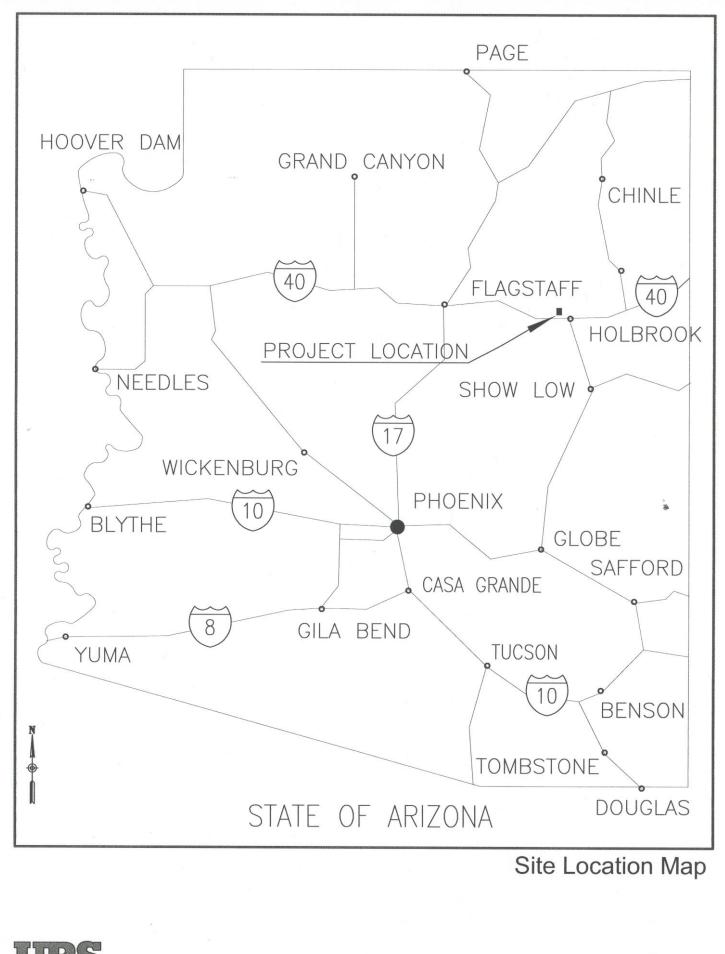
The offsite drainage system was design to collect and convey the 100-year, 24-hour peak flow around the project site to the historic outlet points. The post-development peak flow at these discharge points is less than the pre-development flows. The onsite collection system was designed to collect and convey the 25-year, 24-hour peak flow to a storage basin that has the volume capacity for that design storm. The drainage design drawings for the proposed improvements are included in this report.

5.0 REFERENCES

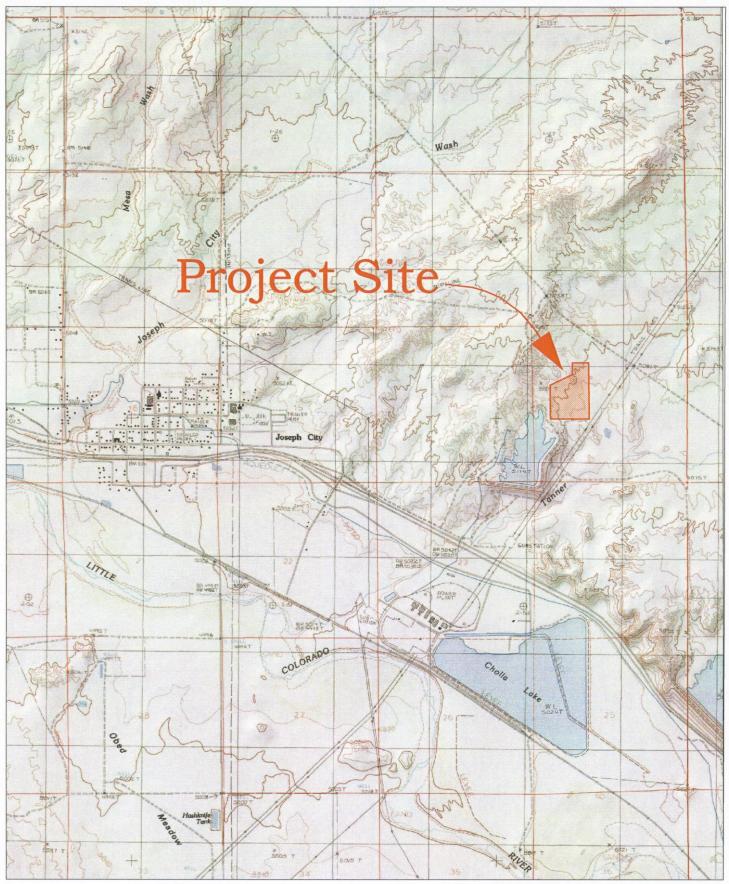
Arizona Department of Transportation (ADOT). 1993. *Highway Drainage Design Manual, Hydrology*. Revision 8-11-94. Report FHWA-AZ93-281. Prepared for the Arizona Department of Transportation by NBS/Lowry Engineers & Planners, Phoenix, Arizona, and George V. Sabol Consulting Engineers, Brighton, Colorado.

Available at:

http://www.azdot.gov/Highways/Roadway_Engineering/Drainage_Design/PDF/ADOTHighwayDrainageDesignMa nual_Hydrology.pdf.


National Oceanic and Atmospheric Administration (NOAA). 2008. NOAA's National Weather Service, Hydrometeorological Design Studies Center, Precipitation Frequency Data Service. NOAA Atlas 14, Arizona. Available at http://hdsc.nws.noaa.gov/hdsc/pfds (accessed January 2009).

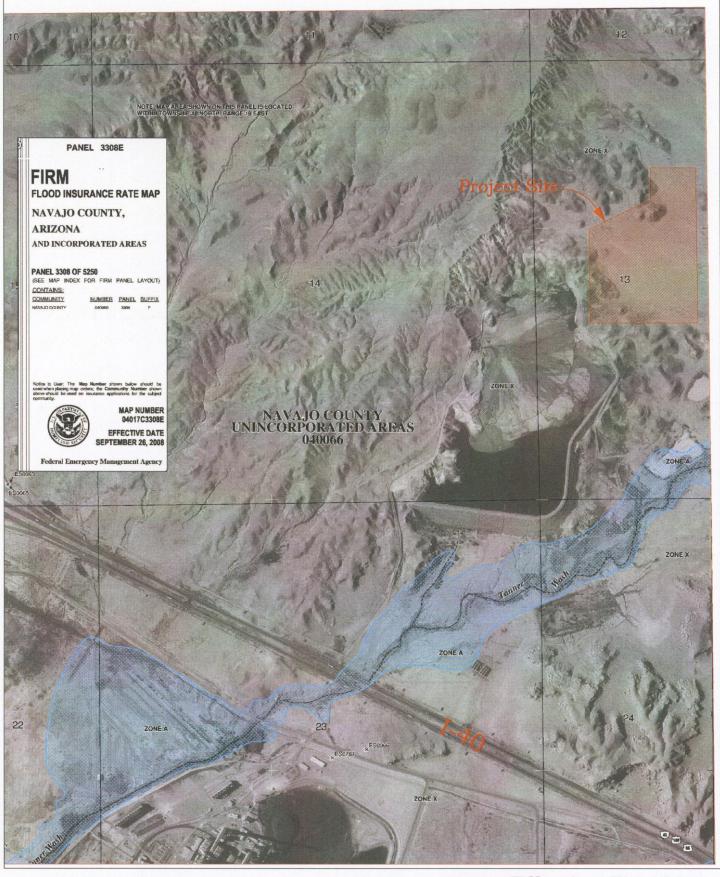
United States Department of Agriculture, National Resources Conservation Service (NRCS) 2008. Web Soil Survey. Available at http://websoilsurvey.nrcs.usda.gov/app/ (accessed February 4, 2009).



FIGURES

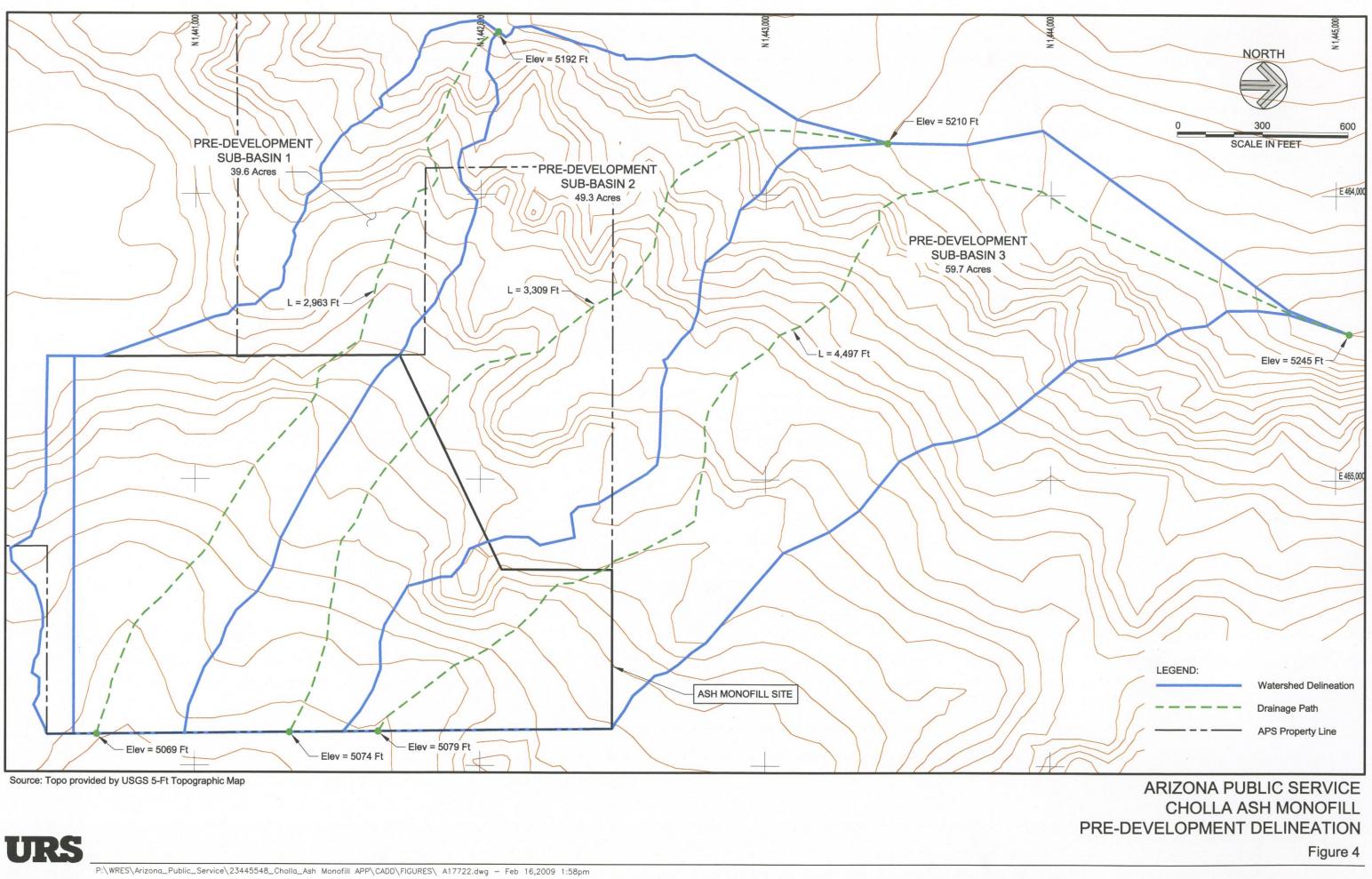
P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

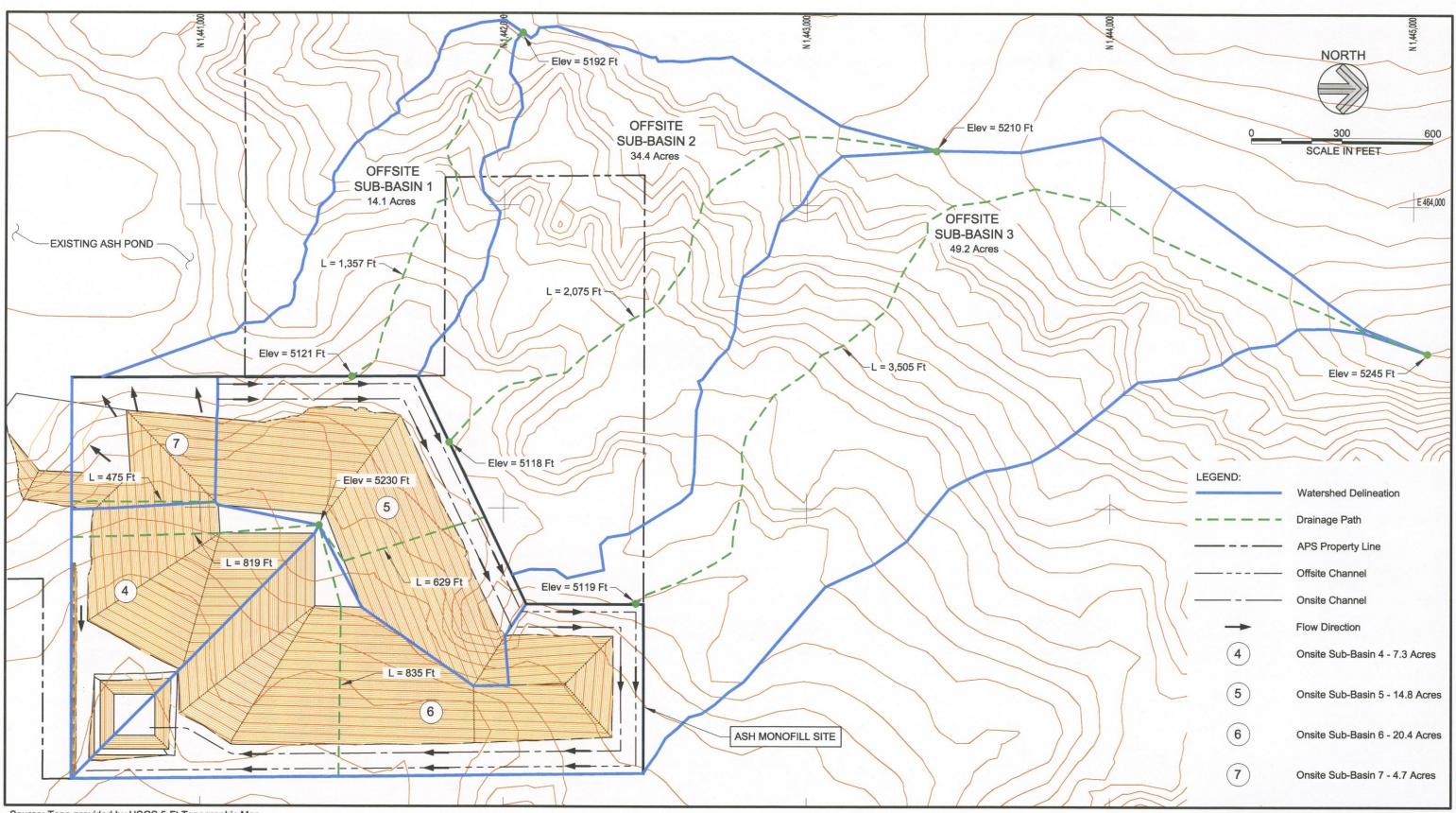
P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\CADD\FIGURES\Location Map.dwg


N

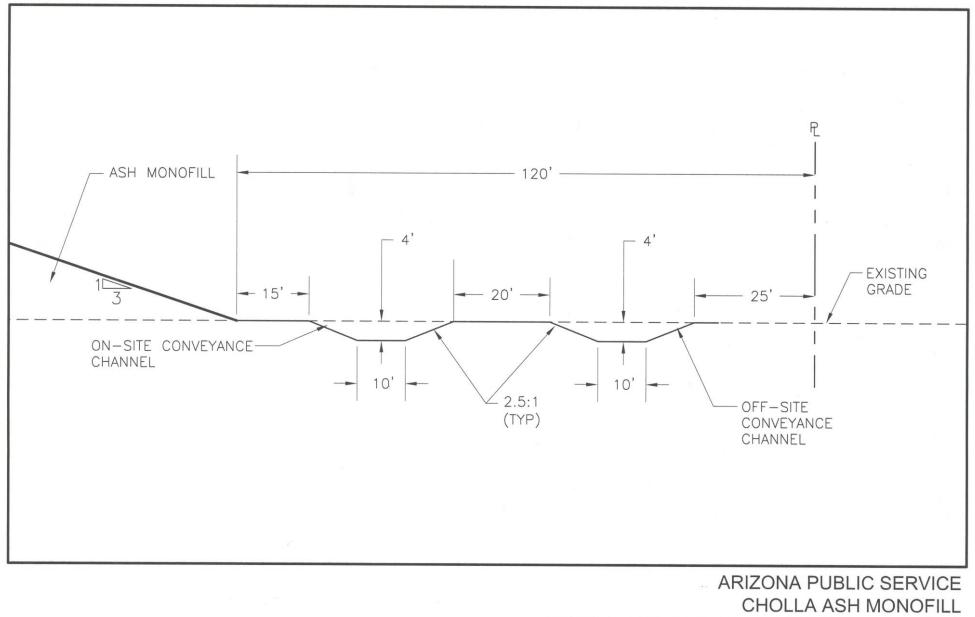
Site Location Map

Ash Monofill Drainage Study Navajo County


Figure 2



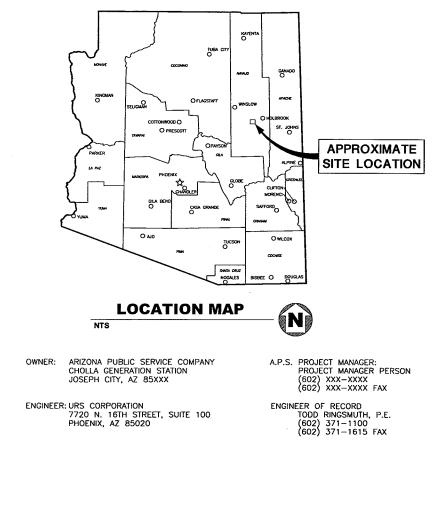
Effective Firm Map Ash Monofill Drainage Study Navajo County



Source: Topo provided by USGS 5-Ft Topographic Map 2-Ft Topographic Map Provided by Arizona Public Service

ARIZONA PUBLIC SERVICE CHOLLA ASH MONOFILL POST-DEVELOPMENT DELINEATION

Figure 5


OFFSITE AND ONSITE PERIMETER CHANNELS

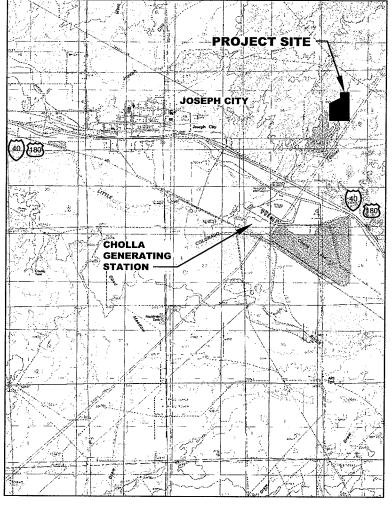
DRAINAGE DRAWINGS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

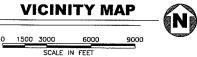
ARIZONA PUBLIC SERVICE CHOLLA GENERATING STATION CHOLLA ASH MONOFILL APP JOSEPH CITY, ARIZONA

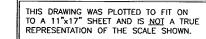
F

D


C

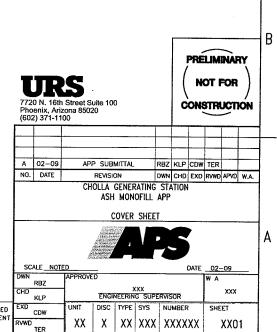
В

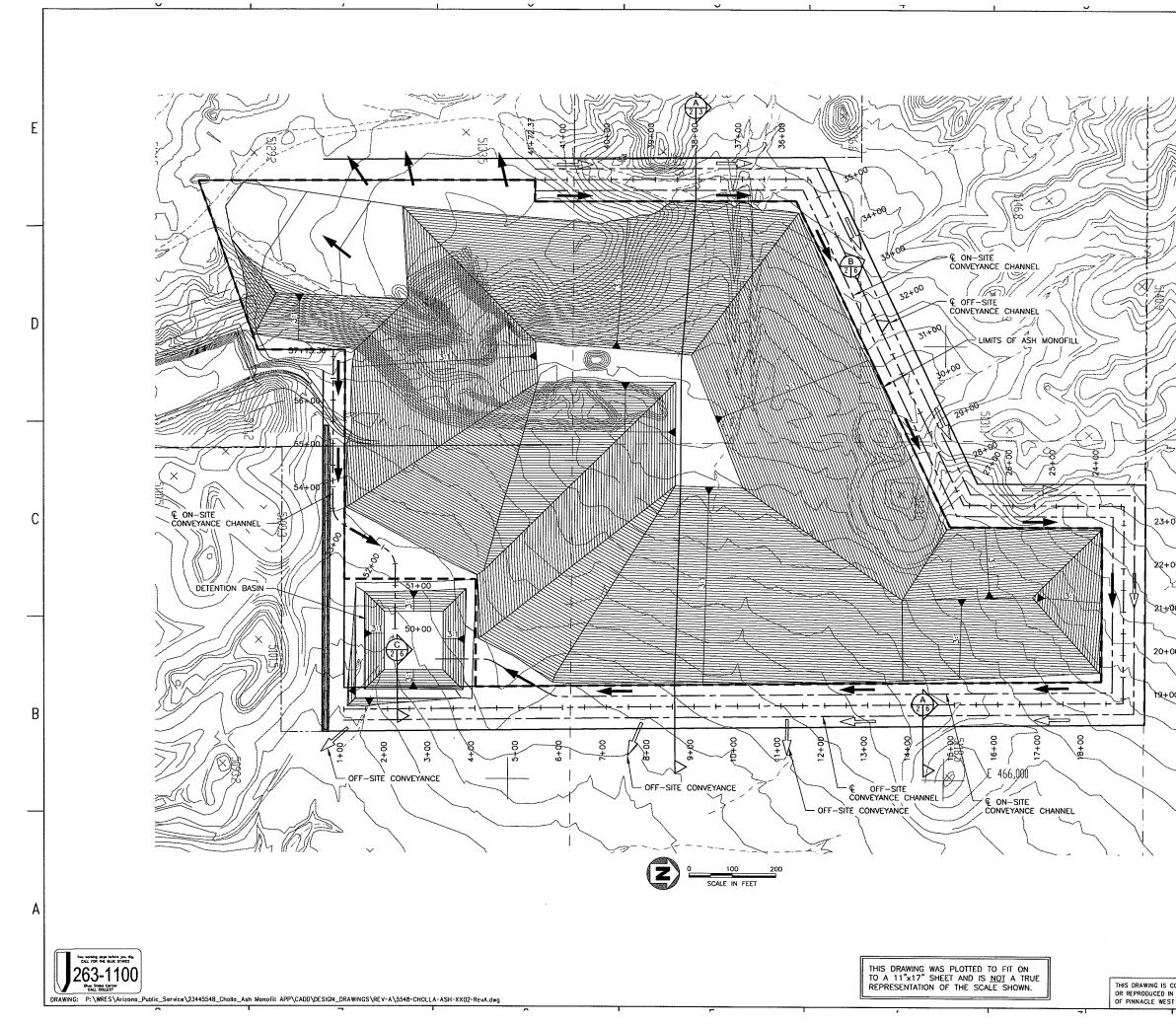

Α


Two marking days before you dig. CALL FOR THE BLUE STAKES

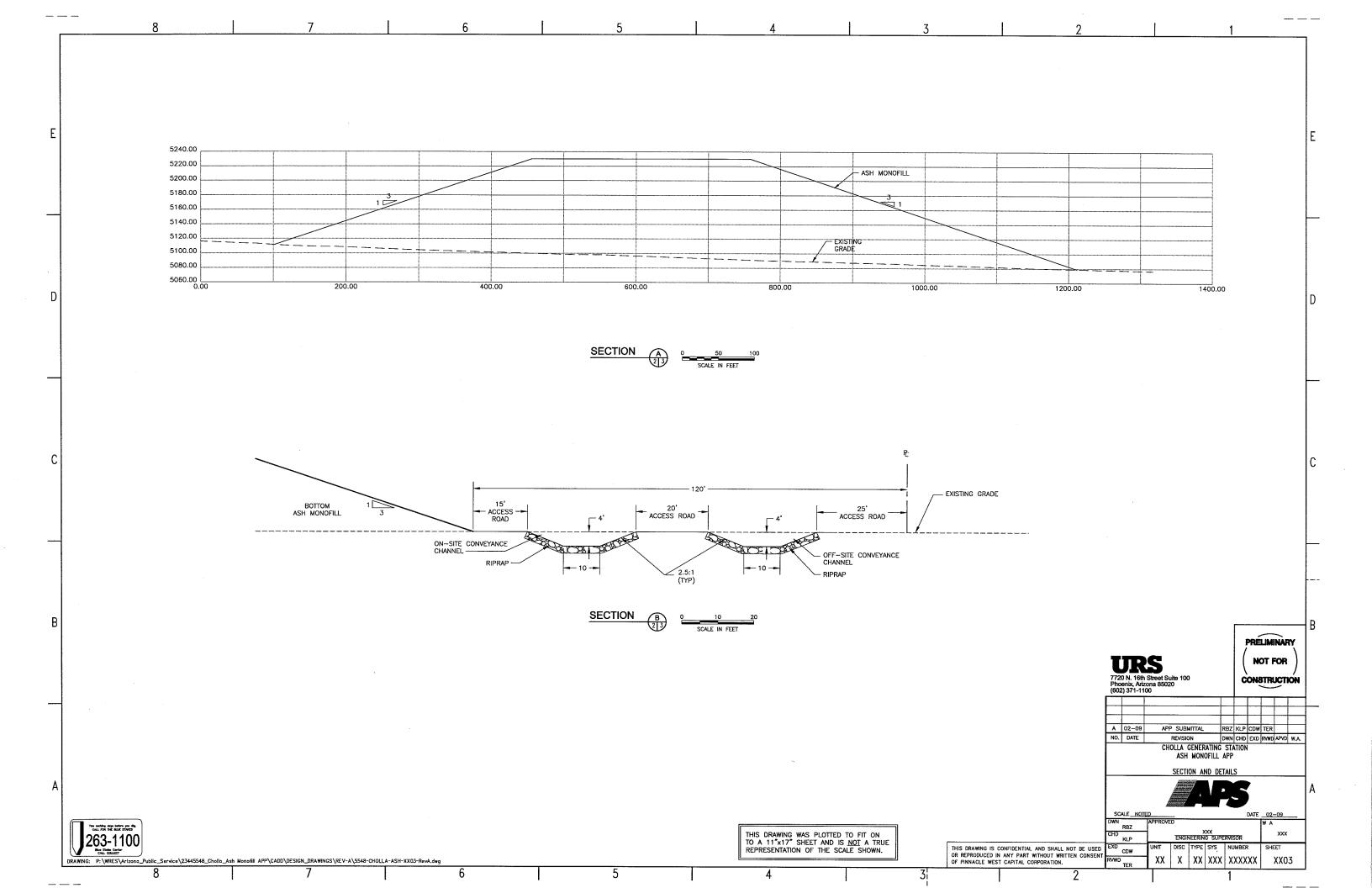
263-1100

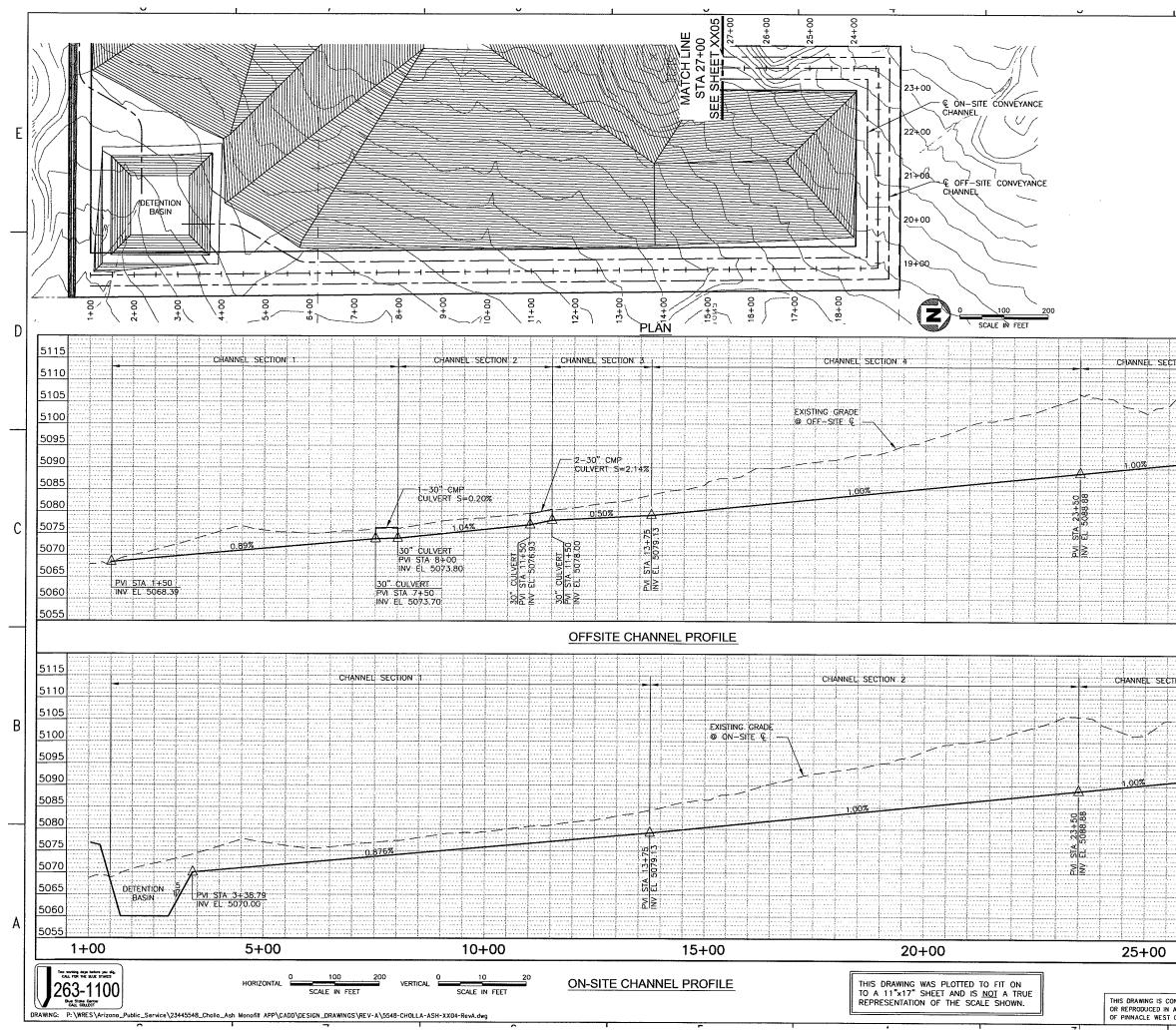
DRAWING 5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-5548-CHOLLA-



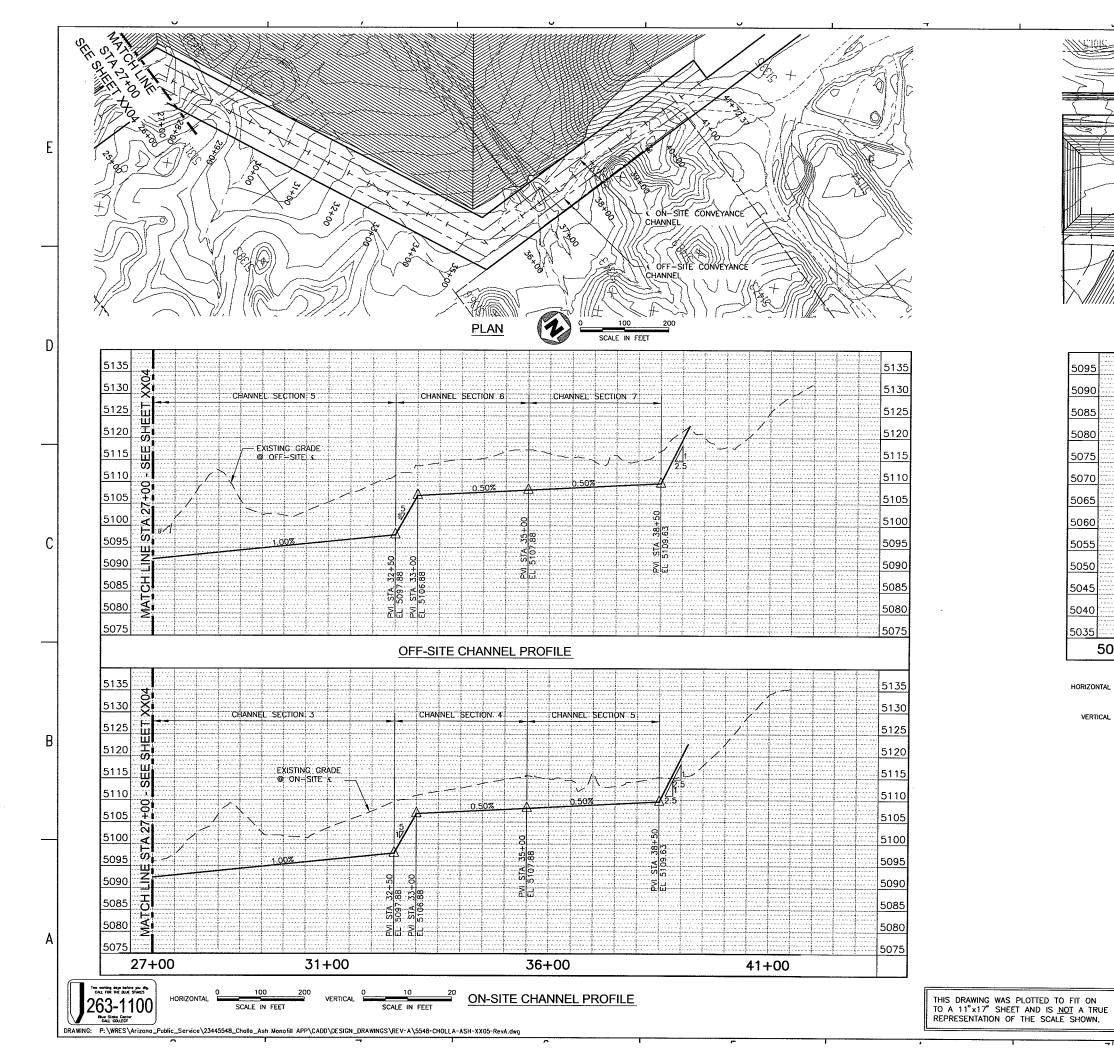

DRAWING INDEX

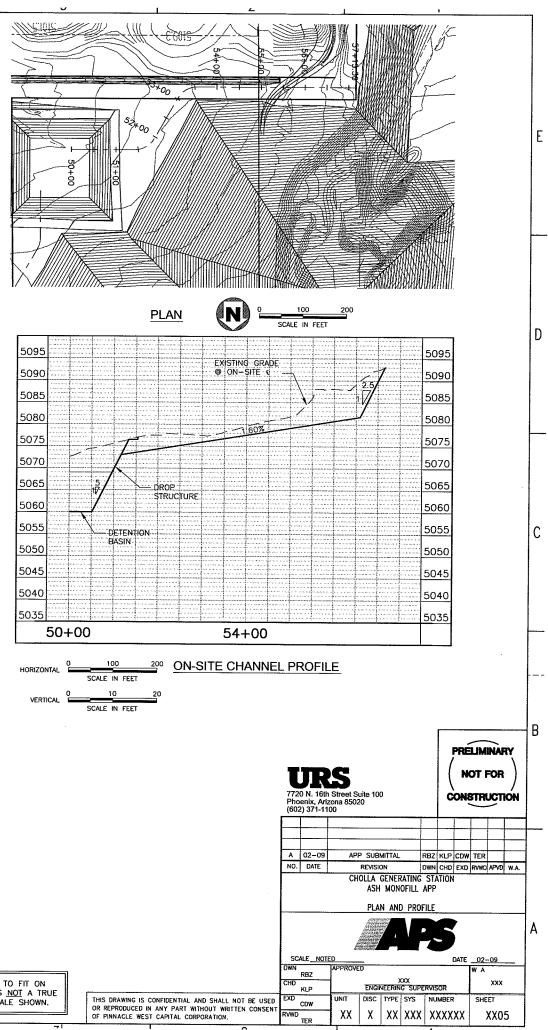
NO.	REV.	DRAWING TITLE
ASH-XX01	Α	COVER SHEET
ASH-XX02	Α	GENERAL SITE PLAN
ASH-XX03	А	SECTION AND DETAILS
ASH-XX04	А	PLAN AND PROFILES
ASH-XX05	А	PLAN AND PROFILES
ASH-XX06	А	SECTION AND DETAILS

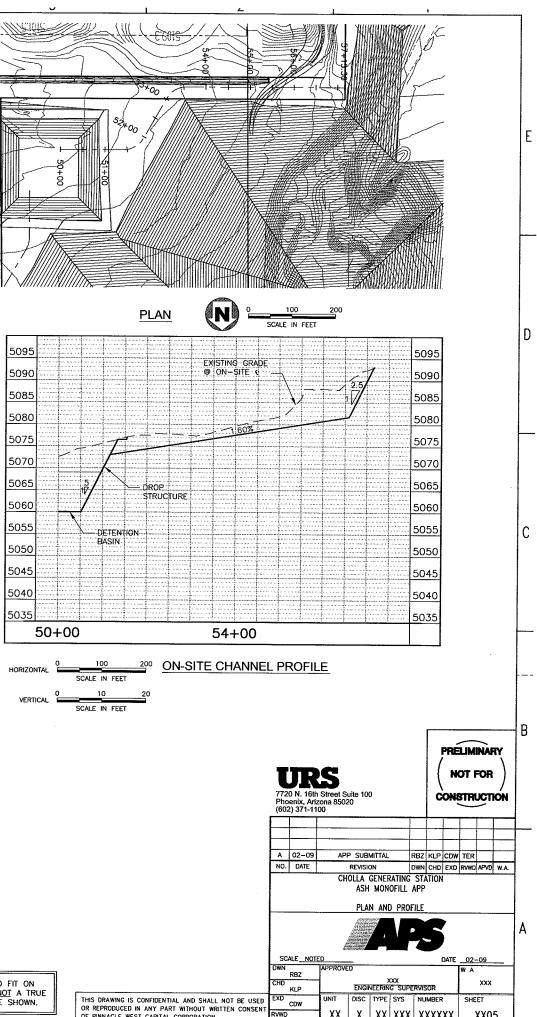


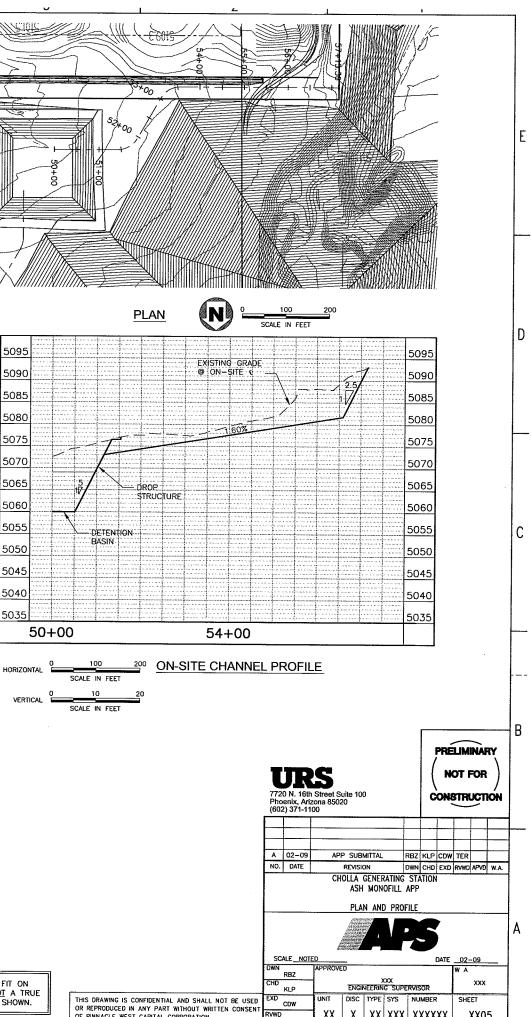

F

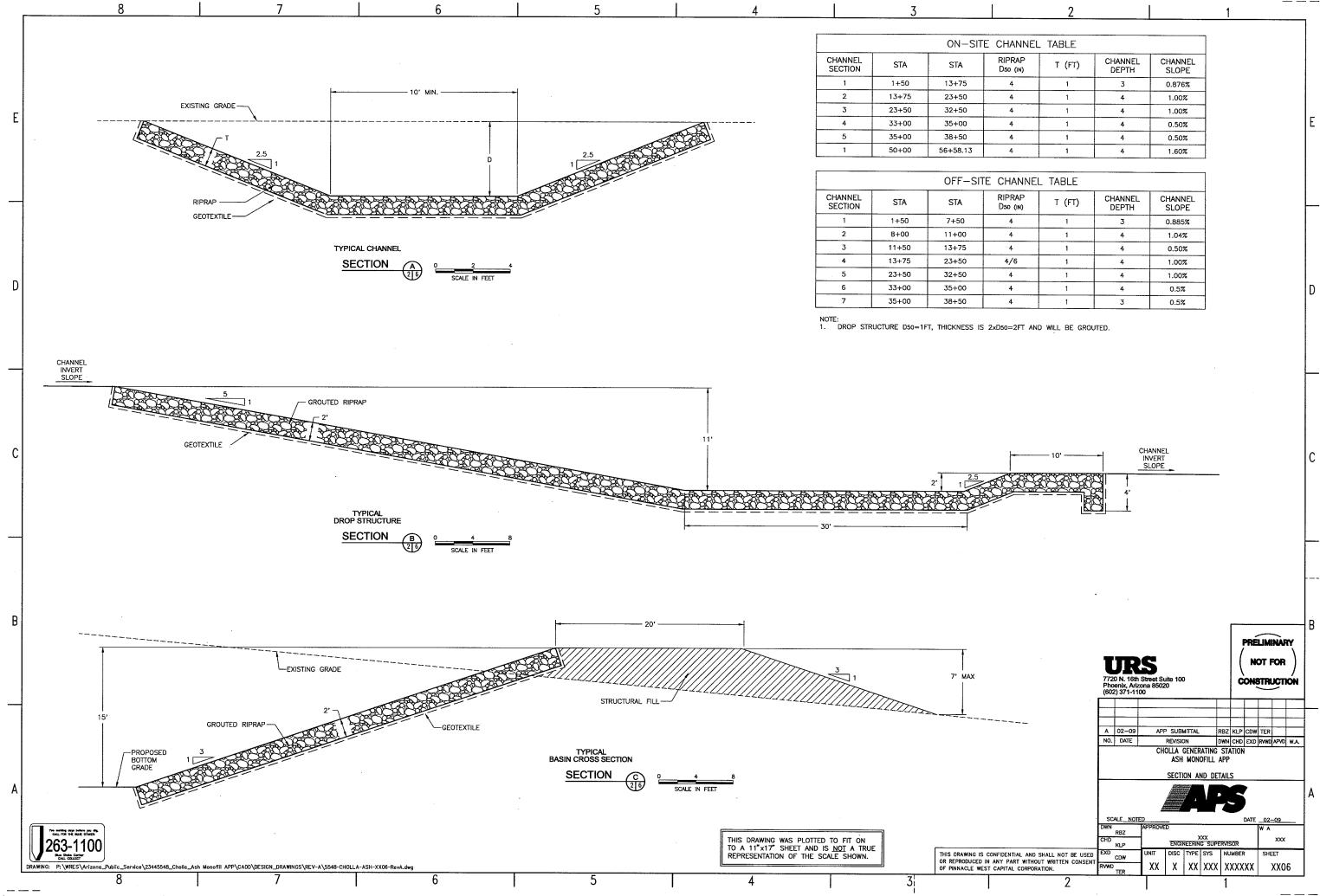
THIS DRAWING IS CONFIDENTIAL AND SHALL NOT BE USED OR REPRODUCED IN ANY PART WITHOUT WRITTEN CONSENT OF PINNACLE WEST CAPITAL CORPORATION.


<u>_</u>		J.			ı		_
							E
Ê M (C							
and the second							
ALCO ALCO							
S71							D
00							C
00 7 //							
524							
00							
00							
00							
							В
	TTO				1	LIMINARY OT FOR	
\sum_{i}	7720 N. 16#	Street Su	iite 100 n			STRUCTION	
	Phoenix, An (602) 371-11	00					
$\left\{ \right.$	A 02-09	APP	SUBMIT	AI F	BZ KLP COW	TER	
v	NO. DATE		revision DLLA GEN	C IERATING	WN CHD EXD	RVWD APVD W.A.	
		-		onofill <i>i</i> Il site pi			
		4			K		A
	SCALE NOT	ED APPROVEI			DATE	0209	
······	RBZ CHD KLP		ENGINEEI	XXX RING SUPE		W A XXX	
CONFIDENTIAL AND SHALL NOT BE USED IN ANY PART WITHOUT WRITTEN CONSENT ST CAPITAL CORPORATION.	EXD CDW RVWD TER	XX		pe sys X XXX	NUMBER XXXXXXX	sheet XX02	
T^		 -			4	••••••	






				5115]													D
CTION			X05	5110														
/	$\sum_{i=1}^{n}$		Ê	5105														
	· · · · · ·	N,	E H H H H S H	5100														
			Ш	5095														\vdash
			<u>v</u>	5090														
k				5085														
			NE STA 27	5080														
			S T	5075														С
				5070														
			CHI	5065														
			AAT A	5060														
				5055														
																		\vdash
				5115														
CTION	3		XX05	5110														
			×	5105														
N			Ш	5100									_					В
	`		ы С	5095										RÉ	LIM	NAF	٩Y	
			- SE	5090		T	TR	S					(N	DT F	OR		
			00 4	5085		Pho	enix, Ariz	Street S zona 8502	uite 100 20	0			°	ONS	TRL	СП	/ ION	
			A 27	5080		(602	2) 371-11	00			-							
			ST/	5075														
			л П	5070		A NO.	02-09 Date	AP	P SUBI REVISIO					CDW EXD	ter Rvwd	APVD	W.A.	
		· · · · · · ·	Н Н	5065				СН	OLLA ASH		RATING OFILL		TION					
			1ATC	5060					PLA	n ani) prof	FILE						
			2	5055						Ϊ,			5	•				A
		27+	-00				LE <u>NOT</u>					4		DATE	_02-	-09		
						DWN	RBZ	APPROVE		,	xx				WA	xxx		
ONFIDE	NTIAI	AND SH		OT BE US	FD	EXD	KLP	UNIT	ENGI	TYPE	G SUPE		OR MBER	_	SHE			
ANY I		ITHOUT	WRITT	EN CONSE		RVWD	TER	ХХ	X	ХХ			XXX			(XO	4	
				~				1				4						-


E

	2			1
				1
E CHANNEL	_ IABLE			
RIPRAP D50 (in)	T (FT)	CHANNEL DEPTH	CHANNEL SLOPE	
4	1	3	0.876%	
4	1	4	1.00%	
4	1	4	1.00%	
4	1	4	0.50%	
4	1	4	0.50%	
4	1	4	1.60%	
E CHANNEI	L TABLE			-
RIPRAP D50 (in)	т (FT)	CHANNEL DEPTH	CHANNEL SLOPE	
4	1	3	0.885%	
4	1	4	1.04%	
4	1	4	0.50%	
4/6	1	4	1.00%	
4	1	4	1.00%	
4	1	4	0.5%	

APPENDIX A

RAINFALL CALCULATIONS

CALCULATION COVER SHEET

Client: Arizona Public Service	Project Name:	Cholla	Ash Monofill
Project/Calculation Number: 23445548			
Title: Rainfall Data for the Rational Method			
Total Number of Pages (including cover sheet): 24			
Total Number of Computer Runs:			
Prepared by: Michelle C. West, EIT Mille I. a.	ind	Date:	2/3/2009
Checked by: Danette Lucas, EIT WANTER U	cas	Date:	2/5/2009
Description and Purpose: The purpose of this calculation was to determine the rain calculation package. Included in this package is the rainfall data including I-D-F as well as the I-D-F curves.			
Design Basis/References/Assumptions The rainfall data was based on NOAA Atlas 14, and the rainfall The NOAA data was located based on Latitude and Longitu Dam near the project area. The I-D-F worksheet and I-D-F curve printouts were generate P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash M Design\Hydrology\ADOT IDF-Rainfall-Data.xls	ide coordinates	for the (spreads)	Cholla Bottom Ash
Remarks/Conclusions/Results: See attached worksheets			
Calculation Approved by: Project	ct Manager/Date		
Revision No.: Description of Revision:	Ap	proved	by:

Project Manager/Date

RAINFALL DATA CALCULATION CHOLLA ASH MONOFILL HYDROLOGY ANALYSIS CHOLLA GENERATING STATION ARIZONA PUBLIC SERVICE

Problem Statement

The object of this calculation is to determine the rainfall data required in the Rational Method calculation package for the hydrology analysis of the proposed Cholla Ash Monofill.

The Rainfall Data was calculated using the procedure outlined in the Arizona Department of Transportation (ADOT) Highway Drainage Design Manual Hydrology.

Required Deliverables

- I-D-F worksheets and I-D-F curves for use with the Rational Method as required by the ADOT method.
- Rainfall intensity and depth for 100-year storm event, 24-hour duration.

Data Available

- Cholla Bottom Ash Dam location (Latitude 34.97 N, Longitude 110.29 W)
- NOAA Atlas 14 Rainfall Data for site specific latitude and longitude
- Arizona Zone Rainfall Map

Results

The printout I-D-F worksheets and I-D-F curves were generated from the following Excel spreadsheet are attached:

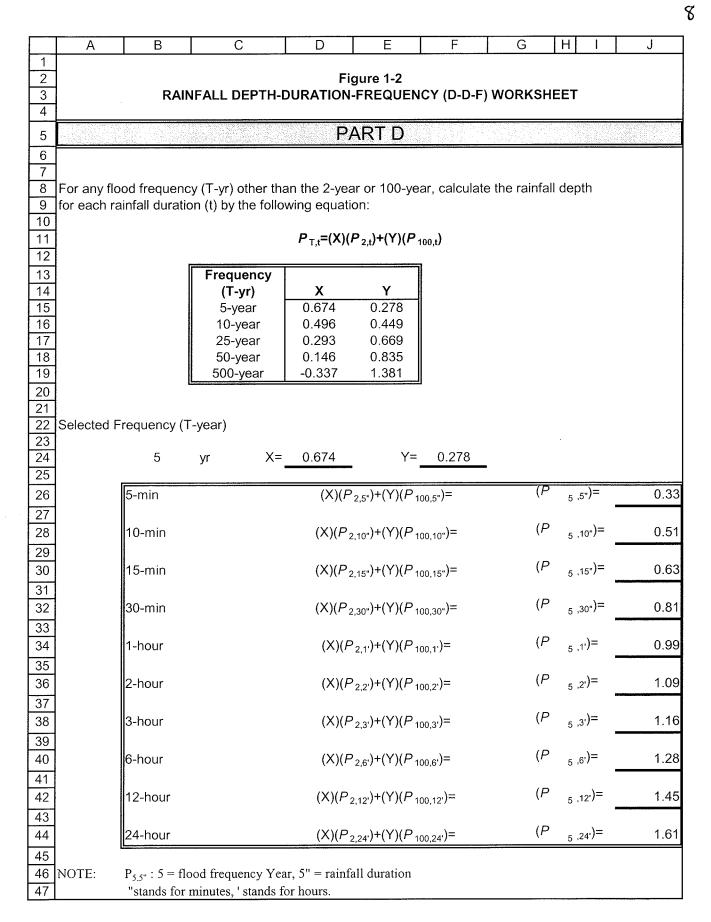
P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\ADOT IDF-Rainfall-Data.xls

REFERENCES

NOAA Atlas 14 Point Precipitation Frequency Estimates. <u>www.noaa.gov</u>.

ADOT Highway Drainage Design Manual Hydrology. March 1993.

WORKSHEETS


P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\Calculations\Rainfall Data\Rainfall Data Calc-draft.doc

	A	В	С		D	E		F	G	H	I
1	AF	NZ	ONA	DEI	PART	MENT	O]	F TRAN	SPORT	TATION	
2			I	HYE	ROL	OGIC	DE	SIGN I	АТА		
3											
4	Project No.		45548								
5	Project Name				ant - Asl	n Fill		Date	2/3/2009		
6 7	Location/Station Designer	Jose MC\	eph City	/, AZ				Checker	DRL		
8	Designer	10101	/ v				<u> </u>	Onconci			
9						Figure					
10 11	R	AINF	ALL DI	ЕРТН	-DURA	TION-FR	EQU	ENCY (D-	D-F) WOR	KSHEET	
							TA				
12					o a o	PAR	I A				
13 14	Determine rainfall	deni	ths fron	n Pre	cinitatio	n Data (N	۵۵۵	Atlas 14)			
15		ucp		1110	opitatio	n Data (N	0/1		•		
16	2-year, 6-hour									P _{2,6'=}	0.96
17	2-year, 24-hour									P _{2,24'=}	1.25
18	100-year, 6-hour									P 100,6'=	2.28
19	100-year, 24-hour									P 100,24'=	2.77
20											
21		an an an				PAR	ΤB				
22											
23 24	Compute the follo	wing	:								
	2-year, 1-hour			0.011	+0.942($P_{2,c})^2$				P _{2,1'=}	0.68
26	,,				(P ₂					2 , 1	0.00
27	100-year, 1-hour		0.	494+	<u>0.755(</u> <i>F</i>	_				P 100,1'=	1.91
28					(P ₁₀₀	· ,				•	
29	2-year, 2-hour		0.3	41(P		59(P _{2.1'})		·		P _{2,2'=}	0.78
30	2-year, 3-hour				,	31(P _{2,1})				P _{2,3'=}	0.84
31	2-year, 12-hour					$00(P_{2,24'})$				P _{2,12'=}	1.11
32	100-year, 2-hour					59(P _{100,1'}))			P _{100,2'=}	2.04
33	100-year, 3-hour		0.569) (P ₁₀₀	_{0,6'})+0.43	31(P _{100,1'}))			P 100,3'=	2.12
34	100-year, 12-hour		0.500	(P ₁₀₀	, _{6'})+0.50	00(P _{100,24})			P 100,12'=	2.53

	A	В	С	D	E	F	G	Н	
1		Α	RIZONA I	DEPARTM	IENT OF	TRANS	PORT	ATION	
2			Н	YDROLO	GIC DES	IGN DA	ТА		
3]								
4	Project No.	23445				_			
5	Project Name Location/Station		Power Plant -	Ash Fill		_Date	39847		
7	Location/Station	MCW	n City, AZ			Checker	DPI		161 - 4
8							DICE		
9]				Figure 1-2				
10 11		F	RAINFALL DE	PTH-DURATIC	ON-FREQUE	NCY (D-D-I	-) WORK	SHEET	
<u> </u>		4.15 (J.F.)						1.5.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
12 13				PART	A - FORM	ULAS			
	Determine rainfall depths	from isc	pluvial maps (av Drainade F)esian Man		andix B)	
15			plana napo (, BOT Highwe	ay brainage L	200igir Mari		anuix D).	
16	2-year, 6-hour							P _{2,6'=}	0.96
17	2-year, 24-hour							P _{2,24'=}	1.25
18	100-year, 6-hour							P 100,6'=	2.28
19	100-year, 24-hour							P 100,24'=	2.77
20							······		
21				PART E	3 - FORM	ULAS			
22									
23 24	Compute the following:								
	2-year, 1-hour		0.0	011+0.942(P2) ²			P	=(-0.011+(0.942*116^2)/117)
26			0.0	(P _{2.24'})				· 2,1'=	-(-0.011+(0.942 110.2)/117)
	100-year, 1-hour		0.49	(' 2,24') 94+ <u>0.755(P</u> ₁₀₀				P 100 1/-	=0.494+(0.755*118^2)/19
28			0.1	(P _{100,24'})				, 100,1=	-0.434 (0.733 110 2)/119
	2-year, 2-hour		0.341	(P _{2.6'})+0.659(a				Par	=0.341*\$I\$16+0.659*\$I\$25
	2-year, 3-hour			(P _{2.6'})+0.431(<i>i</i>					=0.569*\$I\$16+0.431*\$I\$25
	2-year, 12-hour			(P _{2.6})+0.500(F					=0.5*\$ \$16+0.5*\$ \$17
	100-year, 2-hour			⊃ _{100.6'})+0.659(/					=0.341*\$ \$18+0.659*\$ \$27
	100-year, 3-hour			⊃ _{100.6'})+0.431(<i>)</i>					=0.569*\$I\$18+0.431*\$I\$27
34	100-year, 12-hour		0.500(F	P _{100.6})+0.500(<i>F</i>	⊃ _{100,24} ,)				=0.5*\$ \$18+0.5*\$ \$19

	A	В	С	D	I E I	F	G	Н	
1						<u> </u>		L	
2				Figure					
3		RAINFAL	L DEPTH-DUR	ATION-FRI	EQUENCY ([D-D-F) WOR	RKSHEET		
5				F	PART C		6		
7	Determine	e the short-d	uration rainfall zo	one (Fiaur	e 1-1):				
8				···· (· · g -··	/.				
9				Zone =	6				
10	Determine	the short d	uration rainfall ra	tios (Table	1_1).				
12	Determine				; 				
13			Duration		Ra				
14			(Minutes)		Year	100-\			
15 16			5 10	A= B=	0.35 0.54	E= F=	0.32 0.50		
17			15	C=	0.65	G=	0.62		
18			30	D=	0.83	H=	0.81		
19 20									
20									
22									
23	Compute I	the following	:						
24		2-year, 5-m	nin	*******	(A)(P _{2,1'})=	P _{2,5"=}	0.24	1	
26		2-year, 0-m	1111		(~)(* 2,1')-	• 2,5 =	0.24		
27		2-year, 10-	min		(B)(P _{2,1'})=	P _{2,10"=}	0.37		
28					,	-			
29		2-year, 15-	min		(C)(P _{2,1'})=	P _{2,15"=}	0.44		
30						- -	0.5		
31		2-year, 30-	min		(D)(P _{2,1'})=	P _{2,30"} =	0.57		
32 33		100-year, 5	5-min		(E)(P _{100,1'})=	P _{100,5"=}	0.61		
34					ν -/ ν 100,17	100,0 -	0.01		
35		100-year, 1	I0-min		(F)(P _{100,1'})=	P _{100,10"=}	0.96		
36						-			
37		100-year, 1	I5-min		(G)(P _{100,1'})=	P _{100,15"=}	1.18		
38						- -			
39		100-year, 3	30-min		(H)(P _{100,1})=	P _{100,30"=}	1.55		

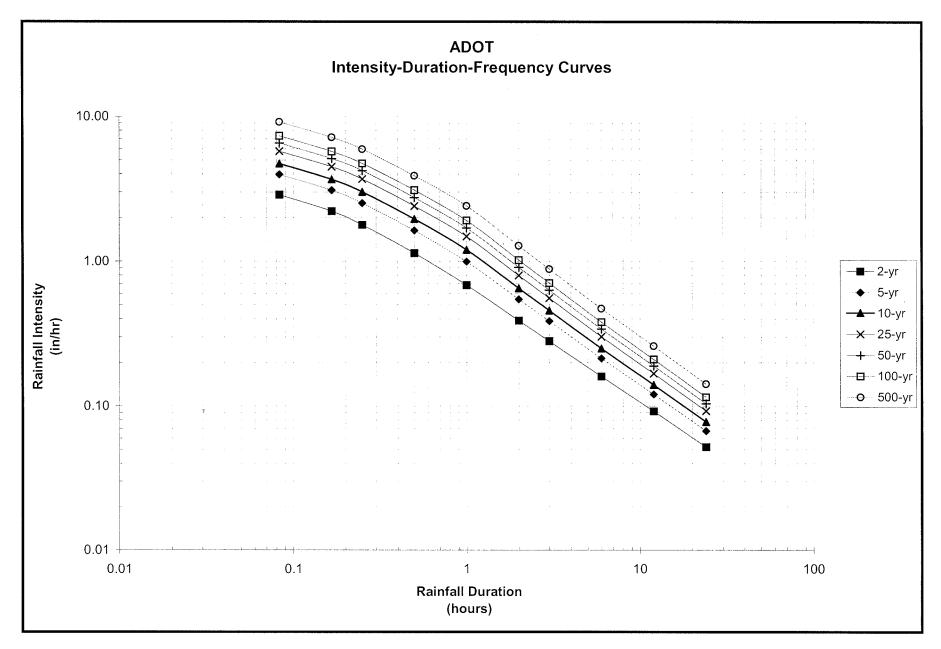
	A	В	С	D	E	F	G	Н	
1 2 3 4			F	AINFAL	Figure 1-2 L DEPTH-DURATION-FREQUENCY (D-D-	F) WORK	SHEET	ε	
5					PART C - FORMULA	S			
6 7 8 9	Determine th	ne short-duration ra	infall zone (Fig	j ure 1-1): Zone =					
10 11 12	Determine th	e short duration ra آآ							
13			Duration			atio			
14			(Minutes) 5	A=	2-Year =IF(\$E\$9=6,0.35,IF(\$E\$9=8,0.34,"NG"))	E=	100-Year =IF(\$E\$9=6,0.32,IF(\$E\$9=8,0.3,"NG"))		
10 17 18	Compute the		10 15 30	B= C= D=	=IF(\$E\$9=6,0.54,IF(\$E\$9=8,0.51,"NG")) =IF(\$E\$9=6,0.65,IF(\$E\$9=8,0.62,"NG")) =IF(\$E\$9=6,0.83,IF(\$E\$9=8,0.82,"NG"))		=IF(\$E\$9=6,0.5,IF(\$E\$9=8,0.46,"NG")) =IF(\$E\$9=6,0.62,IF(\$E\$9=8,0.59,"NG")) =IF(\$E\$9=6,0.81,IF(\$E\$9=8,0.8,"NG"))		
19		Ľ			-ii (\u00e920,0.03,ii (\u00e920,0.02, iii ())	11	-IF(\$E\$3-0,0.01,IF(\$E\$3-0,0.0, NG))		
21									
23 24	Compute the	following:							
		2-year, 5-min	<u></u>	dite	(A)(P _{2,1})=	P _{2,5"=}	=E15*'Parts A & B'!I25		
27		2-year, 10-min			(B)(P _{2,1'})=	P _{2,10"=}	=E16*'Parts A & B'!\$I\$25		
29		2-year, 15-min			(C)(P _{2,1})=	P _{2,15"=}	=E17*'Parts A & B'!\$I\$25		
31		2-year, 30-min			(D)(P _{2.1})=	P _{2,30"=}	=E18*'Parts A & B'!\$I\$25		
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39		100-year, 5-min			(E)(P _{100.1})=	P _{100.5"=}	='Parts A & B'!I27*'Part C'!G15		
35		100-year, 10-min			(F)(P _{100.1})=	P _{100.10"=}	='Parts A & B'!\$I\$27*'Part C'!G16		
37		100-year, 15-min			(G)(P _{100.1})=	P _{100,15"=}	='Parts A & B'!\$I\$27*'Part C'!G17		
38 39		100-year, 30-min			(H)(P _{100,1'})=	P _{100,30"=}	='Parts A & B'!\$I\$27*'Part C'!G18		

	A	В	C		D	E	F		G	H		J
1					Fi	gure 1-2						
3		RAI		PTH-D		-FREQUE	NCY (D-D-	F) WC	RKSI	HEET		
4												
5				and the second	<u>بط</u>	ART D						
6 7												
		od frequenc					ear, calcul	ate the	e rainfa	all depth	I	
9 10	for each ra	infall duratio	on (t) by the	e follow	/ing equati	on:						
11					P _{T,t} =(X)(P _{2,t})+(Y)(P	100,t)					
12 13			Eroguo				ח					
14			Frequer (T-yr)	-	х	Y						
15			5-yea	r [0.674	0.278						
16 17			10-уеа 25-уеа		0.496 0.293	0.449 0.669						
18			50-yea	ar	0.146	0.835						
19 20			500-ye	ar [-0.337	1.381						
21												
22	Selected Fi	requency (T	-year)									
24		10	yr	X=_	0.496	Y=	0.449	_				
25	ſ	- ·							(F	<u> </u>		
26 27		5-min			(X)(P	_{2,5"})+(Y)(P	100,5") =		(/	, _{10 ,5"})	-	0.39
28		10-min			(X)(P ₂	_{2,10"})+(Y)(P	_{100,10"})=		(F	7 10 ,10'	.)=	0.61
29												
30 31		15-min			(X)(P ₂	_{2,15"})+(Y)(P	_{100,15"})=		(<i>F</i>	ס 10 ,15'	.)=	0.75
32		30-min			(X)(P ₂	_{2,30"})+(Y)(P	100 30")=		(F	7 10 ,30"	.)=	0.98
33							100,00 /					
34		1-hour			(X)(P	2,1')+(Y)(P	100,1') =		(F	י _{10, 1} י) ^י	=	1.20
35 36		2-hour			(X)(P	' _{2,2'})+(Y)(P	100 21)=		(F	ר _{10 ,2'}):		1.30
37					(*)(*	2,27 (1)(7)	100,27			10 12 1		1.00
38		3-hour			(X)(<i>P</i>	' _{2,3'})+(Y)(P	_{100,3'})=		(F	ר _{10 ,3'}): 10 ,3'		1.37
39 40		6-hour			(Y)(D	' _{2,6'})+(Y)(P)=		(F	,	=	1.50
40		o-noui			(^)(2,677177	100,6'7		١,	י _{10,6} , אין		1.50
42		12-hour			(X)(P ₂	_{2,12'})+(Y)(P	100,12')=		(P	10 ,12')=	1.68
43		04 5			~~~~		,		/ 5			1.0-
44		24-hour			(X)(P ₂	_{2,24'})+(Y)(P	_{100,24'})=		(P	10 ,24')=	1.86

	A	В	С	D	E	F	G	H	J
1				Fi	gure 1-2				
3		RAIN	IFALL DEPTH-I			ICY (D-D-F)	WORKSH	IEET	
4							20 M		
5		en solection des Transferences	17. RADIA A	<u> </u>	ARTD	7.4996 S. H.			
6									
7 8	For any flo	od freguenc	;y (T-yr) other tha	an the 2-vea	ar or 100-ve	ar. calculate	e the rainfa	ll depth	
9	-	•	on (t) by the follo						
10						,			
11				$P_{T,t} = (\Lambda)(I)$	P _{2,t})+(Y)(<i>P</i>	100,t)			
13			Frequency						
14			(T-yr)	X	Y				
15 16			5-year 10-year	0.674 0.496	0.278 0.449				
17			25-year	0.293	0.669				
18			50-year	0.146	0.835				
19 20			500-year	-0.337	1.381				
21									
	Selected F	requency (T	-year)						
23 24		25	yr X=	0.293	Y=	0.669			
25							•		
26		5-min		(X)(P	_{2,5"})+(Y)(P ₁	_{00,5"})=	(P	(_{25 ,5"})=	0.48
27				00/0		,	(P) —	0.75
28		10-min		(X)(P ₂	_{',10"})+(Y)(P ₁	00,10")=	(/	25 ,10")=	0.75
29 30		15-min		(X)(P			(P)=(_{25 ,15"})	0.92
31					,157 (1777)	00,137		25 110 /	
32		30-min		(X)(P ₂	_{,30"})+(Y)(P ₁	_{00,30"})=	(P	=(_{25,30} ")=	1.20
33							(0	· · · · ·	
34		1-hour		(X)(P	' _{2,1'})+(Y)(P ₁	_{00,1'})=	(<i>P</i>)= _{25 ,1})=	1.48
35 36		2-hour		(X)(P	' _{2,2'})+(Y)(P ₁	= =	(P	_{25 ,2'})=	1.59
37				(71)(7	2,27 (17,7 1	00,27	,	20 ,4 /	
38		3-hour		(X)(P	' _{2,3'})+(Y)(P ₁	=(_{00,3'})=	(<i>P</i>	, _{25 ,3} ,)=	1.67
39									
40	:	6-hour		(X)(P	2,6')+(Y)(P ₁	_{00,6'})=	(P)= _{25 ,6} ,)=	1.81
41 42		12-hour		(Y)/D	_{2.12'})+(Y)(P ₁)=	(P	_{25 ,12'})=	2.01
42		n∠-nour		(^)()	2,127 ግር ካሊም 1	00,12'7	* *	25,127	2.01
43		24-hour		(X)(P	_{2,24'})+(Y)(P ₁	_{00,24'})=	(P	= 25 ,24')=	2.22

	A	В	С	D	Е	F	=		G	Н	1		J
1													
2	-				gure 1-2				DVO				
3 4		RAI	NFALL DEPTH-	DURATION	FREQUE	ENCY (D)-D-F) WO	RKS	HEEI			
5				P/	ART D	e i composi ca		(C. Puello	E. 71. \ 5.				
6	1961 D. S. G. M. C. M. D. DOM.						essan in Co.	1910 - 1917 - 1917					
7	-												
8	For any flo	od frequend	cy (T-yr) other th	an the 2-yea	ar or 100-	year, cal	culat	e the	rainfa	all dep	th		
9	for each ra	infall durati	on (t) by the follo	wing equation	on:								
10													
11				P _{⊤,t} =(X)(I	² ,t)+(Y)(P _{100,t})							
12			I <u></u>			_							
13			Frequency										
14			(T-yr)	X	Y								
15 16			5-year	0.674 0.496	0.278 0.449								
17			10-year 25-year	0.490	0.669								
18			50-year	0.146	0.835								
19			500-year	-0.337	1.381								
20			L										
21													
22	Selected F	requency (1	Г-year)										
23													
24		50	yr X=	0.146	Ŷ	′= 0.8	35	-					
25		7 ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹							,				
26		5-min		(X)(P	_{2,5"})+(Y)(<i>H</i>	⊃ _{100,5"})=			(F	⊃ ₅₀ ,5	_{5"})=		0.55
27										_			
28		10-min		(X)(P ₂	_{.10"})+(Y)(<i>I</i>	> _{100,10"})=	=		(<i>F</i>	50 , ²	_{10"})=		0.85
29													
30		15-min		(X)(P ₂	_{,15"})+(Y)(<i>H</i>	⊃ _{100,15"})=	:		(F	5, 50	15") =		1.05
31													
32		30-min		(X)(P ₂	_{,30"})+(Y)(<i>F</i>	⊃ _{100,30"})=	:		(<i>F</i>	⊃ 50,3	30")=		1.38
33													
34		1-hour		(X)(P	_{2,1'})+(Y)(<i>F</i>	> _{100.1'})=			(<i>F</i>	> 50 ,1	ı [.])=		1.70
35					_,	,							
36		2-hour		(X)(P	_{2,2'})+(Y)(<i>F</i>	⊃ _{100 2'})=			(F	> 50 ,2	_{2'})=		1.81
37					_,_ / \ /\	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				00 /			
38		3-hour		(X)(P	_{2,3'})+(Y)(<i>F</i>	⊃ _{100 3'})=			(F) 50,3	.)=		1.89
39				Nº 7/1	2,37 \`/\'	100,57				50 14	-		
40		6-hour		(X)(P	_{2.6'})+(Y)(<i>F</i>	- 100 cl)=			(F	⊃ 50,€	;·)=		2.04
41				(**)(*	2,07 \'/\'	100,67			``	50,0	, ,		2.04
41		12-hour		(X)/D	, _{12'})+(Y)(<i>F</i>	>)-			(F	> 50,1)=		2.27
				(^)(^[] 2	,12'7 ' \ ד\ ל	100,12' /			ζ,	50 ,1	21		2.21
101		•								-			
<u>43</u> 44		24-hour			, _{24'})+(Y)(F	י ר			(F	ک , 50)		2.50

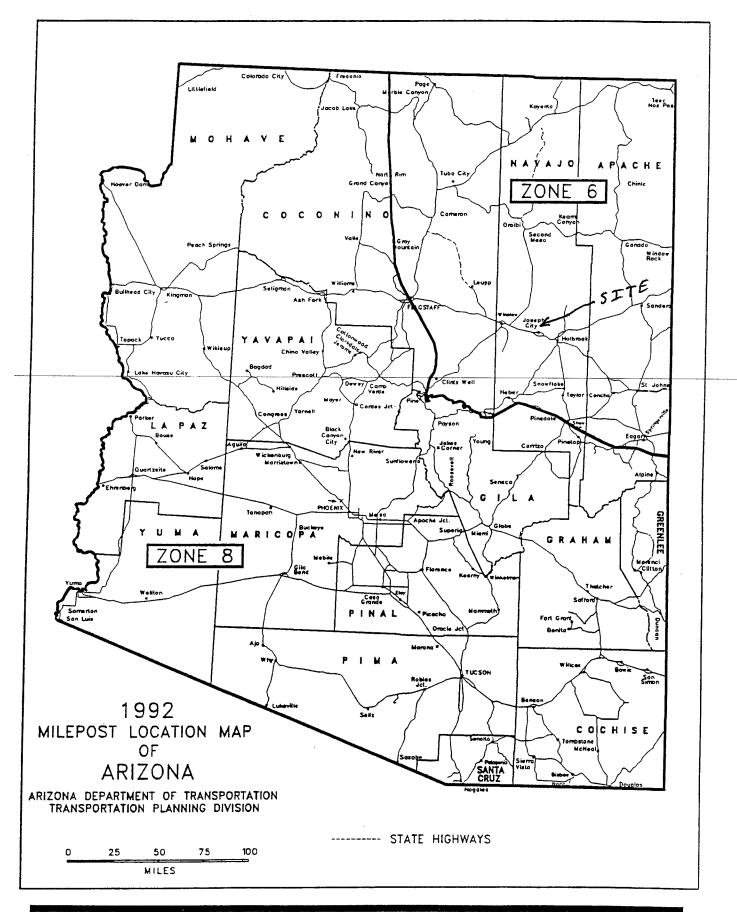
	A	В	С	D	E	F	G	H	J
1			· · · · · · · · · · · · · · · · · · ·						
2		RAI	NFALL DEPTH		gure 1-2 -FREQUE	NCY (D-D-F	WORKS	НЕЕТ	
4									
5				P/	ART D				
6									
7	For any flo	od frequenc	;y (T-yr) other tl	han the 2-ves	ar or 100-v	ear calculate	e the rainf	all denth	
			on (t) by the foll					anueptii	
10				5 -00/					
11 12				P _{⊺,t} =(X)(I	P _{2,t})+(Y)(<i>F</i>	7 100,t)			
13			Frequency			٦			
14			(T-yr)	X	Y				
15 16			5-year 10-year	0.674 0.496	0.278 0.449				
17			25-year	0.293	0.669				
18			50-year	0.146	0.835				
19 20		l	500-year	-0.337	1.381				
20									
	Selected F	requency (T	-year)						
23 24		500	yr X≖	-0.337	Y=	= 1.381			
25		000	yı X	-0.001	1-				
26		5-min		(X)(P	_{2,5"})+(Y)(P	_{100,5"})=	(7	⊃ _{500 ,5"})=	0.76
27								_	
28		10-min		(X)(P ₂	_{,10"})+(Y)(P	_{100,10"})=	()	⊃ _{500 ,10"})=	1.20
29 30		15-min		(Y)(D	_{.15"})+(Y)(P)—	(1	⊃ _{500 ,15"})=	1.49
31				(\(\)(1 2	,15"/ ' (' / / '	100,15"/	ζ.	500 ,15")	1.49
32		30-min		(X)(P ₂	_{,30"})+(Y)(P	_{100,30"})=	(7	⊃ _{500 ,30"})=	1.95
33					-				
34		1-hour		(X)(P	_{2,1'})+(Y)(P	_{100,1} .)=	(F	⊃ _{500 ,1} .)=	2.41
35 36		2-hour		(Y\(D	_{2.2'})+(Y)(P)-	(F	⊃ _{500 ,2'})=	2.55
37				(^)(P	2,2'7 ' (')(<i>F</i>	100,2' /	(*	500 ,2'7-	2.00
38		3-hour		(X)(P	_{2,3'})+(Y)(P	_{100,3'})=	(<i>F</i>	⊂ _{500 ,3'})=	2.65
39									
40		6-hour		(X)(P	_{2,6'})+(Y)(P	_{100,6'})=	(F	⊃ _{500,6} .)=	2.83
41 42		12-hour)±\/\/\/D)_	(<i>F</i>	> .)-	0.44
42		12-110UI		(^)(^P 2	_{,12'})+(Y)(P	100,12' /	(7	5 _{500 ,12} .)=	3.11
44		24-hour		(X)(P ₂	, _{24'})+(Y)(P	_{100,24'})=	(F	P _{500 ,24'})=	3.40


1	A I	В	С	[D		EF	GHI		J
2					RAINFALL DE	Figure 1-2 PTH-DURATION-FREQUENCY (D-D		т		
4		• 46.11 2				•				
5	· .					PART D - FORMULAS				
7	For any flood frequency (L-vr) oth	er than the 2-	year or 100-year, calculate the rainfall de	oth					
9	for each rainfall duration (t) by the	following equ	ation:	spin					
10 11					$P_{\tau,t}=(X)(P_{2,t})+(Y)$	(P _{100,t})				
12		Γ	Frequency	<u> </u>			······			
14 15			(T-yr) 5-year	0.674	X		Y 0.278			
16			10-year 25-year	0.496 0.293			0.449 0.669			
18			50-year	0.146			0.835			
20		L	500-year	-0.337			1.381			
21 22	Selected Frequency (T-ye	ar)								
23 24	50) y	rr X=	=IF(\$B\$24=5,D15,IF(\$B\$24=10,D16,IF((\$B\$24=25.D17.IF(\$B\$24	I=50 D18 IE(\$B\$24=500 D19 "NG"))))) Y= =!F/\$	R\$24=5 E15 E(\$R\$24=	10 516 5/88924-25 517 5/85	\$24=50,E18,IF(\$B\$24=500,E19,"NG"))))
25	5-r						<u>/</u> · · · · · · (0			
20	-r	nin			(X)(P _{2.5} -)+(Y)(<i>i</i>	D 100.5")=		(P =\$B\$24 .5-)=	=\$D\$24*'Part C'!G25+'Part D	!\$F\$24*'Part C'!G33
28	10	min			(X)(P _{2.10} -)+(Y)(<i>i</i>	D 100,10")=		(P _{=\$B\$24} .10 ⁻)=	=\$D\$24*'Part C'!G27+'Part D	!\$F\$24*'Part C'!G35
30	15	min			(X)(P _{2.15} -)+(Y)(<i>I</i>	D 100,15°)=		(P)=	=\$D\$24*'Part C'!G29+'Part D	!\$F\$24*'Part C'!G37
32	30	min			$(X)(P_{2,30^{\circ}})+(Y)(P_{2,30^{\circ}})$	D _{100,30} -)=		(P _{-\$B\$24} .30")=	=\$D\$24*'Part C'!G31+'Part D	!\$F\$24**Part C'!G39
34 35	1-1	юцг			$(X)(P_{2,v})+(Y)(h)$	D _{100,1})=		(P _{*\$8\$24})=	=\$D\$24*'Parts A & B'!I25+'Pa	rt D'!\$F\$24*'Parts A & B'!I27
36 37	2-1	iour			$(X)(P_{2,2})+(Y)(I)$	D _{100.Z})=		(P)=	=\$D\$24*'Parts A & B'!I29+'Pa	rt D'!\$F\$24**Parts A & B'!I32
38	3-1	our			$(X)(P_{2,3'})+(Y)(X)$	=(_{100.3})=		(P)=	=\$D\$24*'Parts A & B'!I30+'Pa	rt D'!\$F\$24**Parts A & B'!I33
40	6-r	iour			$(X)(P_{2,6})+(Y)(A)$	D 100.6')=		(P	=\$D\$24*'Parts A & B'!I16+'Pa	rt D'!\$F\$24*'Parts A & B'!I18
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 34\\ 44\\ \end{array}$	12-	hour			(X)(P _{2.12})+(Y)(A	D 100.12)=		(P _==5B\$2412')=	=\$D\$24*'Parts A & B'!I31+'Pa	rt D'!\$F\$24*'Parts A & B'!I34
44	24	hour			(X)(P _{2,24})+(Y)(A	₽ _{100,24} ;)=		(P _{=\$B\$24}	=\$D\$24*'Parts A & B'!I17+'Pa	rt D'!\$F\$24*'Parts A & B'!I19

	A	В	С	D	E	F	G	Н	l	J	
1											
2											
3 4	RAINFALL DEPTH-DURATION-FREQUENCY (D-D-F) WORKSHEET										
		netrationan a an tairea	age verse form		.				eans fairteac		
5	Systematics				PAF						
6											
7				_							
8	Tabulate t	he rainfall De	epth-Durat	ion-Freque	ncy statisti	cs below:					
9											
10 11											
		li			Dalatal	I Danatha In	Lashaa			1	
12 13						l Depth, In					
13		Duration	2	5	10	uency, In ` 25	50	100	500		
15		5-min	0.24	0.33	0.39	0.48	0.55	0.61	0.76		
16		10-min	0.24	0.55	0.61	0.40	0.85	0.96	1.20		
17		15-min	0.44	0.63	0.75	0.92	1.05	1.18	1.49		
18		30-min	0.57	0.81	0.98	1.20	1.38	1.55	1.95		
19		1-hour	0.68	0.99	1.20	1.48	1.70	1.91	2.41		
20		2-hour	0.78	1.09	1.30	1.59	1.81	2.04	2.55		
21		3-hour	0.84	1.16	1.37	1.67	1.89	2.12	2.65		
22		6-hour	0.96	1.28	1.50	1.81	2.04	2.28	2.83		
23		12-hour	1.11	1.45	1.68	2.01	2.27	2.53	3.11		
24		24-hour	1.25	1.61	1.86	2.22	2.50	2.77	3.40		
25											
26											
27											
28											
29											

	А	В	С	D	E	F	G	Н	1	J				
1						Figure 4.0								
3			Figure 1-2 RAINFALL DEPTH-DURATION-FREQUENCY (D-D-F) WORKSHEET											
4				•			D-1 / WORKONEET							
5					PAR	T E - FORMULAS			승규는 것이 가운데요. 것이					
6				· · · · · · · · · · · · · · · · · · ·										
7														
	Tabulate	the rainfall	Depth-Duration-Freq	uency statistics below:										
9														
10 11														
			1	Rainfall Depth, In Inches										
12 13						Frequency, In Yea				-				
14		Duration		5	10	25	50	100	500					
15 16		5-min	='Part C'!G25	='Part D, 5-yr'!J26	='Part D, 10-yr'!\$J26	='Part D, 25-yr'!\$J26	='Part D, 50-yr'!\$J26	='Part C'!G33	='Part D, 500-yr '!J26	1				
16		10-min	='Part C'!G27	='Part D, 5-yr'!J28	='Part D, 10-yr'!\$J28	='Part D, 25-yr'!\$J28	='Part D, 50-yr'!\$J28	='Part C'!G35	='Part D, 500-yr '!J28					
17		15-min	='Part C'!G29	='Part D, 5-yr'!J30	='Part D, 10-yr'!\$J30	='Part D, 25-yr'!\$J30	='Part D, 50-yr'!\$J30	='Part C'!G37	='Part D, 500-yr '!J30					
18 19		30-min	='Part C'!G31	='Part D, 5-yr'!J32	='Part D, 10-yr'!\$J32	='Part D, 25-yr'!\$J32	='Part D, 50-yr'!\$J32	='Part C'!G39	='Part D, 500-yr '!J32					
19		1-hour	='Parts A & B'!125	='Part D, 5-yr'!J34	='Part D, 10-yr'!\$J34	='Part D, 25-yr'!\$J34	='Part D, 50-yr'!\$J34	='Parts A & B'!127	='Part D, 500-yr '!J34					
20		2-hour	='Parts A & B'!129	='Part D, 5-yr'!J36	='Part D, 10-yr'!\$J36	='Part D, 25-yr'!\$J36	='Part D, 50-yr'!\$J36	='Parts A & B'!132	='Part D, 500-yr '!J36					
21		3-hour	='Parts A & B'!I30	='Part D, 5-yr'!J38	='Part D, 10-yr'!\$J38	='Part D, 25-yr'!\$J38	='Part D, 50-yr'!\$J38	='Parts A & B'!133	='Part D, 500-yr '!J38					
22		6-hour	='Parts A & B'!I16	='Part D, 5-yr'!J40	='Part D, 10-yr'!\$J40	='Part D, 25-yr'!\$J40	='Part D, 50-yr'!\$J40	='Parts A & B'!118	='Part D, 500-yr '!J40					
20 21 22 23 24		12-hour	='Parts A & B'!I31	='Part D, 5-yr'!J42	='Part D, 10-yr'!\$J42	='Part D, 25-yr'!\$J42	='Part D, 50-yr'!\$J42	='Parts A & B'!134	='Part D, 500-yr '!J42					
		24-hour	='Parts A & B'!117	='Part D, 5-yr'!J44	='Part D, 10-yr'!\$J44	='Part D, 25-yr'!\$J44	='Part D, 50-yr'!\$J44	='Parts A & B'!119	='Part D, 500-yr '!J44					
25														
26														
25 26 27 28 29														
28														
29														

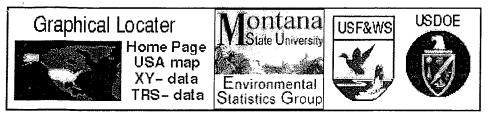
_


P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\Calculations\Rainfall Data\ADOT IDF-Rainfall-Data

REFERENCES

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\Rainfall Data Calc-draft.doc

FIGURE 1-1 SHORT-DURATION RAINFALL RATIO ZONES FOR ARIZONA


Abitibi Co.	Abitibi Consolidated Snowflake Division	lake Division						·	
State ID	NID	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Rea. IDF
09.35	AZ00227	Ash Lagoons	Low	S21,T13N,R19E	Earth	25	451	Small	100-vear
09.36	AZ00231	Mill Pond	Low	S17,T13N,R19E	Earth	30	2200	Intermediate	
Arizona G	Arizona Game & Fish Department	irtment							
State ID	DID	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Rea. IDF
09.20	AZ00042	Black Canyon	High	S24,T11N,R15E	Earth	60	1581	Intermediate	0.5 PMF
09.19	AZ00051	Fool Hollow	High	S12.T10N.R21E	Earthrock	60	3217	Intermediate	0.5 PMF
Arizona P ₁	ublic Service Con	Arizona Public Service Company, Cholla Power Plant							
State ID	NID	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Req. IDF
09.27	AZ00178	Cholla Bottom Ash Pond	High	S13,T18N,R19E	Earth	73	2200	Intermediate	
09.28	AZ00179	Cholla Fly Ash Pond	High	S30,T18N,R20E	Earth	80	18000	Intermediate	
Arizona Pı	ublic Service Com	Arizona Public Service Company, Phoenix Office							
State ID	<i>dIN</i>	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Req. IDF
09.29	AZ00180	Cholla Cooling Pond	Significant	S26,T18N,R19E	Earth	13	2200	Small	
City of Show Low	ом Гом								
State ID.	DID	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Rea. IDF
09.13	AZ00023	Jaques	High	S10,T9N,R22E	Earth	65	6000	Intermediate	
City of Winslow	nslow								
State ID	DID	Dam Name	Hazard Class	Location	Dam Type	Height	Capacity	Dam Size	Rea. IDF
09.03	AZ00057	Clear Creek #1	Low	S10,T18N,R16E	Masonry	7	350	Small	A second s
Page 24 of 37			•						19

Navajo Abitibi Conso

ł

Page 24 of 37

Graphical Locater Result

The selected location is:

Latitude/Longitude 34.9584°N, 110.2784°W (34°, 57', 30.4" N; 110°, 16', 42.3" W) The legal description is: Arizona, Gila & Salt River Meridian T18N,R19E,sec13.

The elevation is 1554 m (5098 ft) The gradient is: 0.0 percent There is no aspect direction. The local roughness is: 0.0 or flat The location as decimal degrees (X,Y;Z) = -110.2784, 34.9584; 1554 m

The state and county are Arizona: Navajo County 4017 The HUC is Middle Little Colorado 15020008; Place point in HUC The Omernik ecoregion is Arizona/New Mexico Plateau (less typical) 22 The 1:100,000 map (if available); Switch to TerraServer Zoom on that location with radius = 2 km; 5 km; 10 km; 20 km; 30 km; custom.

Nearby named places (in order by distance)

- 1. Cholla Cooling Pond Dam; Arizona: Navajo Co. -110.2774, 34.9550 at a distance of 391 m
- 2. Cholla Fly Ash Pond; Arizona: Navajo Co. -110.2674, 34.9600 at a distance of 1023 m
- 3. Cholla Fly Ash Pond Dam; Arizona: Navajo Co. -110.2674, 34.9600 at a distance of 1023 m
- 4. Cholla Bottom Ash Pond; Arizona: Navajo Co. -110.2890, 34.9667 at a distance of 1332 m
- 5. Cholla Bottom Ash Pond Dam; Arizona: Navajo Co. -110.2890, 34.9667 at a distance of 1332 m
- 6. Cholla Power Generating Plant; Arizona: Navajo Co. -110.2979, 34.9394 at a distance of 2759 m
- 7. Cholla Lake; Arizona: Navajo Co. -110.2838, 34.9306 at a distance of 3125 m
- 8. The Old Fort Historical Monument; Arizona: Navajo Co. -110.3210, 34.9558 at a distance of 3898 m
- 9. Joseph City Elementary School; Arizona: Navajo Co. -110.3318, 34.9647 at a distance of 4923 m
- 10. Joseph City High School; Arizona: Navajo Co. -110.3318, 34.9653 at a distance of 4933 m

The 7.5 minute series topographic maps for that area

Humpy Camp Well	Blairs Spring	Lee Mountain
Apache Butte	Joseph City	Holbrook
Chimney Canyon	Saunders Draw	Porter Canyon

6

NOAA 14 TABLES

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

Precipitation Frequency Data Server

POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14

Page 1 of 4

21

Arizona 34.9667 N 110.289 W 5200 feet

from "Precipitation-Frequency Atlas of the United States" NOAA Atlas 14, Volume 1, Version 4

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland, 2006

E

xtracted: Thu Jan 22 2009	
---------------------------	--

Cor	nfiden	ce Lim	iits][_ Se	easona	lity	[cation	Maps		Other	Info.][GI	S data	Ma	aps	Docs	[F	Return to Sta
					Pre	cipita	tion 1	Frequ	iency	Estin	nates	(inch	es)						
ARI* (years)	<u>5</u> min	<u>10</u> min	<u>15</u> min	<u>30</u> min	<u>60</u> min	120 min	<u>3 hr</u>	<u>6 hr</u>	<u>12 hr</u>	<u>24 hr</u>	<u>48 hr</u>	<u>4</u> day	<u>7</u> <u>day</u>	<u>10</u> <u>day</u>	<u>20</u> <u>day</u>	<u>30</u> <u>day</u>	<u>45</u> <u>day</u>	<u>60</u> <u>day</u>	
1	0.18	0.27	0.33	0.45	0.55	0.63	0.68	0.77	0.88	1.00	1.12	1.25	1.43	1.57	2.04	2.39	2.87	3.30	
2	0.23	0.34	0.43	0.58	0.71	0.81	0.86	0.96	1.09	1.25	1.40	1.55	1.77	1.96	2.54	2.97	3.56	4,09	E
5	0.31	0.47	0.58	0.78	0.96	1.07	1.11	1.21	1.36	1.57	1.74	1.92	2.18	2.40	3.09	3.61	4.32	4.92	
10	0.37	0.57	0.70	0.94	1.17	1.29	1.33	1.43	1.57	1.83	2.01	2.22	2.51	2.74	3.52	4.08	4.89	5.54	
25	0.47	0.71	0.88	1.19	1.47	1.62	1.65	1.74	1.87	2.19	2.39	2.63	2.95	3.20	4.07	4.68	5.60	6.31	
50	0.55	0.83	1.03	1.38	1.71	1.89	1.91	2.00	2.10	2.47	2.68	2.95	3.29	3.54	4.48	5.12	6.11	6.85	
100	0.63	0.96	1.19	1.60	1.99	2.18	2.20	2.28	2.34	2.77	2.98	3.29	3.63	3.88	4.88	5.54	6.59	7.35	E
200	0.72	1.10	1.36	1.84	2.27	2.50	2.52	2.59	2.61	3.07	3.29	3.62	3.98	4.21	5.26	5.94	7.03	7.81	
500	0.85	1.30	1.61	2.17	2.69	2.97	2.99	3.04	3.08	3.49	3.70	4.08	4.44	4.66	5.75	6.43	7.56	8.35	
1000	0.96	1.46	1.81	2.44	3.02	3.35	3.38	3.43	3.47	3.81	4.02	4.43	4.79	4.99	6.11	6.78	7.91	8.70	

* These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.

Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero.

		4				L .		of the Frequ										
ARI** (years)		10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	0.20	0.31	0.38	0.51	0.64	0.73	0.77	0.86	0.97	1.09	1.22	1.35	1.54	1.70	2.19	2.56	3.08	3.53
2	0.26	0.40	0.49	0.66	0.82	0.93	0.98	1.08	1.22	1.36	1.52	1.67	1.91	2.11	2.73	3.18	3.82	4.37
5	0.35	0.54	0.67	0.90	1.11	1.23	1.27	1.36	1.51	1.70	1.88	2.07	2.35	2.58	3.32	3.85	4.62	5.25
10	0.43	0.65	0.81	1.09	1.34	1.48	1.51	1.60	1.74	1.98	2.18	2.39	2.70	2.94	3.77	4.35	5.21	5.89
25	0.54	0.82	1.01	1.36	1.69	1.85	1.87	1.94	2.07	2.37	2.58	2.83	3.18	3.43	4.36	4.99	5.95	6.70
50	0.62	0.95	1.18	1.59	1.96	2.15	2.17	2.23	2.32	2.67	2.90	3.17	3.54	3.79	4.80	5.46	6.49	7.27
100	0.73	1.10	1.37	1.84	2.28	2.49	2.50	2.55	2.60	2.99	3.22	3.53	3.91	4.16	5.22	5.91	7.00	7.80
200	0.83	1.27	1.57	2.12	2.62	2.87	2.88	2.91	2.91	3.32	3.56	3.90	4.29	4.53	5.64	6.34	7.46	8.30
500	0.99	1.51	1.87	2.52	3.12	3.42	3.43	3.44	3.48	3.78	4.02	4.41	4.80	5.01	6.18	6.88	8.04	8.89
1000	1.12	1.71	2.12	2.85	3.52	3.88	3.90	3.91	3.95	4.15	4.38	4.81	5.20	5.39	6.58	7.26	8.43	9.27

* The upper bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are greater than.

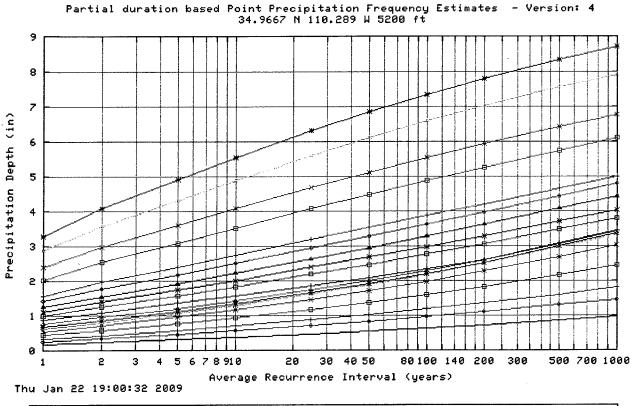
** These precipitation frequency estimates are based on a partial duration series. ARI is the Average Recurrence Interval.

Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

						ver bo cipita												
ARI** (years)	1 . 1	10 min	15 min	30 min	60 min	120 min	3 hr	6 hr	12 hr	24 hr	48 hr	4 day	7 day	10 day	20 day	30 day	45 day	60 day
1	0.15	0.23	0.29	0.39	0.48	0.56	0.60	0.69	0.80	0.93	1.04	1.16	1.33	1.47	1.90	2.24	2.69	3.09
2	0.20	0.30	0.37	0.50	0.62	0.71	0.76	0.86	0.99	1.16	1.29	1.44	1.65	1.82	2.36	2.78	3.34	3.83

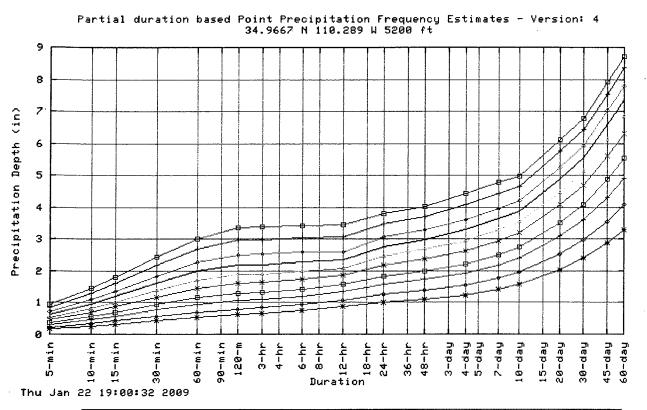
Precipitation Frequency Data Server

Page 2 of 4

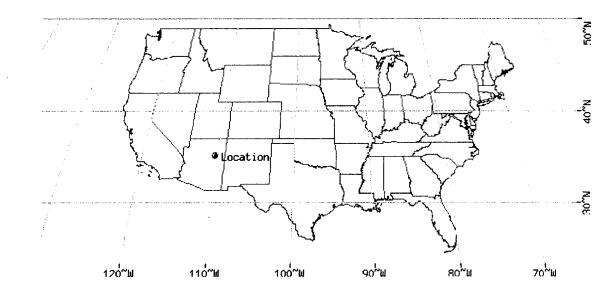

5	0.27	0.41	0.51	0.68	0.84	0.94	0.98	1.09	1.23	1.45	1.61	1.79	2.03	2.24	2.88	3.38	4.05	4.62	22
10	0.32	0.49	0.61	0.82	1.01	1.13	1.17	1.27	1.42	1.69	1.86	2.07	2.33	2.56	3.28	3.82	4.58	5.19	
25	0.40	0.61	0.75	1.01	1.25	1.39	1.43	1.54	1.67	2.01	2.20	2.44	2.74	2.97	3.79	4.38	5.24	5.91	
50	0.46	0.70	0.87	1.17	1.45	1.60	1.64	1.75	1.86	2.26	2.46	2.73	3.04	3.28	4.16	4.78	5.71	6.41	
100	0.53	0.80	0.99	1.34	1.65	1.83	1.86	1.97	2.05	2.51	2.72	3.02	3.35	3.58	4.51	5.16	6.15	6.87	
200	0.59	0.90	1.12	1.51	1.87	2.06	2.09	2.19	2.26	2.77	2.98	3.31	3.65	3.88	4.86	5.52	6.56	7.29	
500	0.69	1.04	1.29	1.74	2.15	2.39	2.42	2.52	2.56	3.12	3.33	3.68	4.05	4.26	5.27	5.94	7.04	7.78	
1000	0.76	1.15	1.43	1.93	2.38	2.64	2.69	2.78	2.81	3.38	3.59	3.97	4.34	4.54	5.58	6.25	7.37	8.10	

* The lower bound of the confidence interval at 90% confidence level is the value which 5% of the simulated quantile values for a given frequency are less than.

** These precipitation frequency estimates are based on a partial duration maxima series. ARI is the Average Recurrence Interval.


Please refer to NOAA Atlas 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero.

Text version of tables


Duration			
5-min	i i i i i i i i i i i i i i i i i i i	48-hr	30-day - ×-
10-min -+	3-hr -*	4-day 🛥	417 (BB) (MM)
15-min 🕂	6-hr -+-	7-day —•—	60-day *
30-min - 0 -	12-hr —	10-day —	_
60-min -*-	24-hr ——	20-day -0-	

1/22/2000

Average Recurrence Interval	
(years)	
1 -*-	nani ni ™iti ninggiyanany
2 🛶	100 —
5 -+	200
10	500
25 —————	500 - 1 1000 - 0

Maps -

These maps were produced using a direct map request from the U.S. Census Bureau Mapping and Cartographic Resources Tiger Map Server.

Please read disclaimer for more information.

http://bdsc.puss.poag.gov/cgi_bin/bdsc/buildout.perl?type=nf&units=us&series=nd&statename=ARIZON 1/22/2000

Precipitation Frequency Data Server

Other Maps/Photographs -

<u>View USGS digital orthophoto quadrangle (DOQ)</u> covering this location from TerraServer; USGS Aerial Photograph may also be available

from this site. A DOQ is a computer-generated image of an aerial photograph in which image displacement caused by terrain relief and camera tilts has been removed. It combines the image characteristics of a photograph with the geometric qualities of a map. Visit the <u>USGS</u> for more information.

Watershed/Stream Flow Information -

Find the Watershed for this location using the U.S. Environmental Protection Agency's site.

Climate Data Sources -

Precipitation frequency results are based on data from a variety of sources, but largely NCDC. The following links provide general information

about observing sites in the area, regardless of if their data was used in this study. For detailed information about the stations used in this study,

please refer to NOAA Atlas 14 Document.

Using the National Climatic Data Center's (NCDC) station search engine, locate other climate stations within:

+/-30 minutes ... OR... +/-1 degree of this location (34.9667/-110.2890). Digital ASCII data can be obtained directly from NCDC.

Find <u>Natural Resources Conservation Service (NRCS)</u> SNOTEL (SNOwpack TELemetry) stations by visiting the <u>Western Regional Climate Center's state-specific SNOTEL station maps</u>.

Hydrometeorological Design Studies Center DOC/NOAA/National Weather Service 1325 East-West Highway Silver Spring, MD 20910 (301) 713-1669 Questions?: <u>HDSC.Questions@noaa.gov</u>

<u>Disclaimer</u>

APPENDIX B

HYDROLOGY

ON-SITE HYDROLOGY

EXHIBIT 4.7-2

CALCULATION COVER SHEET

Description and Purpose:

The purpose of this calculation is to estimate the peak flows required for the offsite and onsite drainage channel design, and to calculate the runoff volume for the onsite drainage detention basin.

The Rational Method and inputs were calculated in an excel spreadsheet. This package contains the input calculations and reference material used to determine C values, K_b values and T_c values. The Rainfall data included in this package is provided in the Rainfall Data calculation package.

The Peak Flow printouts were generated from an excel spreadsheet located:

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel

Design\Hydrology\Calculations\Rational Method\ADOT-IDF-Cholla-Ash-Monofill_2-9-09.xls

Design Basis/References/Assumptions

The drainage basins and flow paths that the rational method calculation are based on are located in the following CADD files:

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\ Topo Base mcw working.dwg

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\X-5548-SitePlan onsite mcw working.dwg

Figures are included which show the proposed development area, the offsite and onsite drainage basin delineations, and the longest flowpaths for each basin.

Remarks/Conclusions/Results: See attached printouts.

Calculation Approved by:

Project Manager/Date

Revision No.:

Description of Revision:

Approved by:

Project Manager/Date

URS

RATIONAL METHOD CALCULATION CHOLLA ASH MONOFILL HYDROLOGY ANALYSIS CHOLLA GENERATING STATION ARIZONA PUBLIC SERVICE

Problem Statement

The object of this calculation is to calculate the peak flows required for the onsite and offsite drainage channel design of the proposed Cholla Ash Monofill, and to calculate the volume required for the detention basin for the onsite drainage.

The peak flows for the drainage basins were calculated using the procedure outlined in the Arizona Department of Transportation (ADOT) Highway Drainage Design Manual Hydrology.

Required Deliverables

- Times of Concentration and Peak flows for each drainage basin, both offsite pre-development (100-year, 24-hour storm event) and onsite post-development (25-year, 24-hour storm event).
- Volume of runoff for onsite post-development detention basin.

Data Available

- Rainfall Data provided in Rainfall Data Calculation package
- I-D-F Data and Curves provided in Rainfall Data Calculation package
- Drainage Area (Total pre-development drainage area is approximately 150 acres, total postdevelopment offsite drainage area is approximately 98 acres, see Fig 1)
- USDA NRCS web soil survey report for hydrologic soil group ratings by soil map unit to provide basis for C value.
- Tables from ADOT Highway Drainage Design Manual Hydrology providing C values and $K_{\rm b}$ values for the calculation
- Contour Data provided by USGS (5-foot contours) and Arizona Public Service (2-foot contours)
- Proposed Ash Monofill contour data.

Results

The printouts of the offsite and onsite peak flows were generated from the following Excel spreadsheet are attached:

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\Calculations\Rational Method\ADOT-IDF-Cholla-Ash-Monofill 2-9-09.xls

The total runoff volume for the onsite post-development drainage basins is 5.5 acre feet, including the proposed area of the detention basin itself.

REFERENCES

ADOT Highway Drainage Design Manual Hydrology. March 1993.

URS Corporation. Rainfall Data Calculation Package. Cholla Ash Monofill. 2009.

USDA NRCS. Web Soil Survey. Soil Properties and Qualities, Hydrologic Soil Group. Accessed February 4, 2009. <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>

WORKSHEETS

Cholla Ash Monofill Cholla Generating Station Arizona Public Service

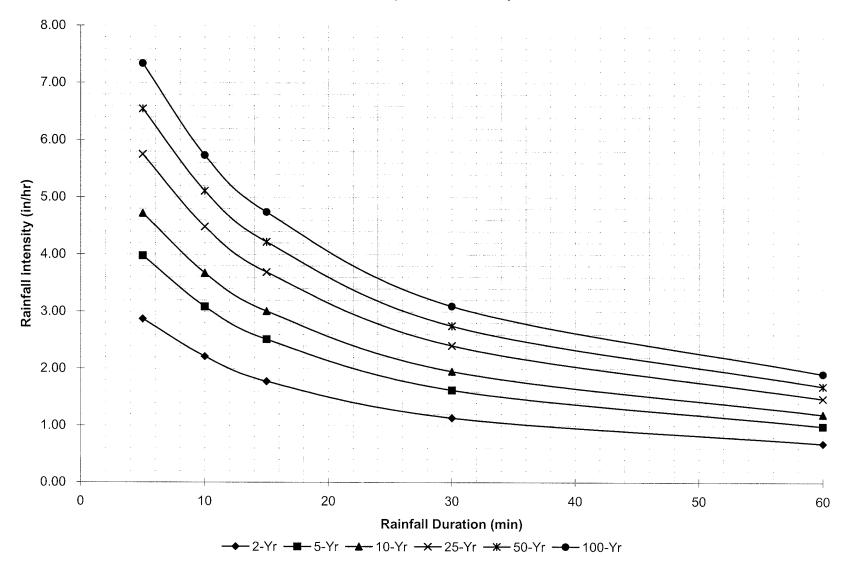
			Ariz	ona Publi	c Service			
	A	С	D	E	F	G	Н	
1								
2		ſ			Rainfall			
3			Return Fi	requency	Depth			
4					(inches)			
5		ľ	2-year,	6-hour	0.96			
6		ľ	2-year, 2		1.25			
7		ľ	100-year		2.28			
8			100-year		2.77			
9		L						
10		Shor	t-Duration Ra	infall Zone =	6			
11								
12		AD	OT RAINFAL	L INTENSIT	Y-DURATION	FREQUENC	Y	
13					I-D-F TABLE			
14								
15			Rai	nfall Intensi	ty (inches/ho	ur)		
16	Duration			Frequenc	y (N-year)			
17		2	5	10	25	50	100	500
18	5-min	2.87	3.97	4.72	5.75	6.55	7.34	9.17
19	10-min	2.21	3.09	3.67	4.48	5.11	5.73	7.17
20	15-min	1.78	2.52	3.01	3.69	4.22	4.74	5.95
21	30-min	1.13	1.63	1.95	2.40	2.75	3.10	3.89
22	1-hour	0.68	0.99	1.20	1.48	1.70	1.91	2.41
23	2-hour	0.39	0.55	0.65	0.80	0.91	1.02	1.28
24	3-hour	0.28	0.39	0.46	0.56	0.63	0.71	0.88
25	6-hour	0.16	0.21	0.25	0.30	0.34	0.38	0.47
26	12-hour	0.09	0.12	0.14	0.17	0.19	0.21	0.26
27	24-hour	0.05	0.07	0.08	0.09	0.10	0.12	0.14
28								
29		А	DOT RAINFA	LL DEPTH-	DURATION-F	REQUENCY		
30			SIT	E SPECIFIC	D-D-F TABL	Ξ		
31								
32				Rainfall De	pth (inches)			
33	Duration			Frequenc	y (N-year)			
34		2	5	10	25	50	100	500
35	5-min	0.24	0.33	0.39	0.48	0.55	0.61	0.76
36	10-min	0.37	0.51	0.61	0.75	0.85	0.96	1.20
37	15-min	0.44	0.63	0.75	0.92	1.05	1.18	1.49
38	30-min	0.57	0.81	0.98	1.20	1.38	1.55	1.95
39	1-hour	0.68	0.99	1.20	1.48	1.70	1.91	2.41
40	2-hour	0.78	1.09	1.30	1.59	1.81	2.04	2.55
41	3-hour	0.84	1.16	1.37	1.67	1.89	2.12	2.65
42	6-hour	0.96	1.28	1.50	1.81	2.04	2.28	2.83
43	12-hour	1.11	1.45	1.68	2.01	2.27	2.53	3.11
44	24-hour	1.25	1.61	1.86	2.22	2.50	2.77	3.40

Cholla Ash Monofill Cholla Generating Station Arizona Public Service

	Cholla Generating Station										
		,		zona Publi		x					
	А	C	D	E	F	G	Н				
45											
46	Procedure In	termediate C	alculations:								
47											
48			Rainfall Dept	h (inches)			Rainfall Dept	h (inches)			
	2-year, 1-hour		0.68		2-year, 5-mi	n	0.24				
	2-year, 2-hour		0.78		2-year, 10-m	nin	0.37				
	2-year, 3-hour		0.84		2-year, 15-m	nin	0.44				
	2-year, 6-hour		0.96		2-year, 30-m	nin	0.57				
	2-year, 12-hoι		1.11		100-year, 5-	min	0.61				
	2-year, 24-hou		1.25		100-year, 10	-min	0.96				
	100-year, 1-ho		1.91		100-year, 15	i-min	1.18				
	100-year, 2-ho		2.04		100-year, 30	-min	1.55				
	100-year, 3-ho		2.12								
	100-year, 6-hc		2.28								
	100-year, 12-h		2.53								
	100-year, 24-h	our	2.77								
61											
	Procedure Lo	ok-up Tables	<u>s:</u>								
63					7		1				
64		Duration		Ratio	_	Frequency		ent Ratio			
65		(Minutes)	6	8	4	(N-yr)	Х	Y			
66		5	0.35	0.34		5	0.674	0.278			
67		10	0.54	0.51		10	0.496	0.449			
68		15	0.65	0.62		25	0.293	0.669			
69		30	0.83	0.82		50	0.146	0.835			
70		5	0.32	0.30		500	-0.337	1.381			
71		10	0.50	0.46							
72			15 0.62 0.59								
73		30	0.81	0.80							
74											

.

Cholla Ash Monofill Cholla Generating Station Arizona Public Service IDF DATA FORMULAS


	A	С	D			
1		<u>~</u>		É	FF	G
2 3 4 5 6 7 8 9 10 11 12 13]					······································
3	4		Return	Frequency	Rainfall	
4	ļ				Depth (inches)	
5	ł		2-yea	r, 6-hour	0.96	
- 0 7	ł		2-year	r, 24-hour	1.25	
8	1			ar, 6-hour	2:28	
9			100-yea	ar, 24-hour	2.77	
10	i					
11				Short-Duration Rainfall Zone	= 6	
12						
13						
14						
14 15 16 17 18 19	_					
16	Duration					
10	5-min	2	5	10	25	50
19	10-min	=C35/\$B18 ≈C36/\$B19		=E35/\$B18	=F35/\$B18	=G35/\$B18
20	15-min	=C30/\$B19 =C37/\$B20	=D36/\$B19	=E36/\$B19	=F36/\$B19	=G36/SB19
20 21	30-min	=C37/\$B20 =C38/\$B21	=D37/\$B20	=E37/\$B20	=F37/\$B20	≈G37/\$B20
22	1-hour	=C39/\$B22	=D38/\$B21 =D39/\$B22	=E38/\$B21	=F38/\$B21	≈G38/\$B21
23	2-hour	=C40/\$B23	=D39/3622 =D40/\$B23	=E39/\$B22	=F39/\$B22	=G39/SB22
23 24	3-hour	=C41/SB24	=D40/3823 =D41/\$B24	=E40/\$B23	=F40/\$B23	=G40/\$B23
25	6-hour	=C42/\$B25	=D41/3624 =D42/\$B25	=E41/\$B24	=F41/\$B24	=G41/\$B24
25 26	12-hour	=C43/\$B26	=D43/\$826	=E42/\$B25	=F42/\$B25	=G42/\$B25
27	24-hour	=C44/\$B27	=D44/\$B27	=E43/\$B26	=F43/\$B26	=G43/\$B26
28 29 30 31				=E44/\$B27	=F44/\$B27	=G44/\$B27
29						
30						
31						
32						•
32 33 34	Duration					
34		2	5	10	25	
35	5-min	≈H48	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$H48)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$H52)	=(VLOOKUP(E\$34,\$G\$65:\$I\$69,2)*\$H48)+(VLOOKUP(E\$34,\$G\$65:\$I\$69,3)*\$H52)		50
36	<u>10-min</u>	≈H49	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$H49)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$H53)	=(VLOOKUP(E\$34,SG\$65:\$I\$69,2)*\$H49)+(VLOOKUP(E\$34,SG\$65:\$I\$69,3)*\$H53)	=(VLOOKUP(F\$34,\$G\$65;\$I\$69,2)*\$H48)+(VLOOKUP(F\$34,\$G\$65;\$I\$69,3)*\$H52)	=(VLOOKUP(G\$34,\$G\$65:\$I\$69,2)*\$H48)+(VLOOKUP(G\$34,\$G\$65:\$I\$69
37	15-min	≈H50	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$H50)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$H54)	=(VLOOKUP(E\$34,\$G\$65;\$I\$69,2)*\$H50)+(VLOOKUP(E\$34,\$G\$65;\$I\$69,3)*\$H54)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$H49)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$H53) =(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$H50)+(VLOOKUP(F\$34,\$G\$66:\$I\$69,3)*\$H54)	=(VLOOKUP(G\$34,\$G\$65:\$I\$69,2)*\$H49)+(VLOOKUP(G\$34,\$G\$65:\$I\$69
38	30-min	=H51	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$H55)	=(VLOOKUP(E\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(E\$34,\$G\$65:\$I\$69,3)*\$H55)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$H54) =(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$H55)	=(VLOOKUP(G\$34,\$G\$65:\$I\$69,2)*\$H50)+(VLOOKUP(G\$34,\$G\$65:\$I\$66
39 40 41	1-hour	=D48	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$D48)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$D54)	=(VLOOKUP(E\$34,\$G\$65;\$I\$69,2)*\$D48)+(VLOOKUP(E\$34,\$G\$65;\$I\$69,3)*\$D54)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D48)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D54)	=(VLOOKUP(G\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(G\$34,\$G\$65:\$I\$69
40	2-hour	=D49	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$D55)	=(VLOOKUP(E\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(E\$34,\$G\$65:\$I\$69,3)*\$D55)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D55)	=(VLOOKUP(G\$34,\$G\$65;\$I\$69,2)*\$D48)+(VLOOKUP(G\$34,\$G\$65;\$I\$69
41	3-hour	=D50	-(VEOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$D56)	=(VLOOKUP(E\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(E\$34,\$G\$65;\$I\$69,3)*\$D56)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D50)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D56)	=(VLOOKUP(G\$34,\$G\$65;\$I\$69,2)*\$D49)+(VLOOKUP(G\$34,\$G\$65;\$I\$69
	6-hour 12-hour	=D51	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$D51)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$D57)	=(VLOOKUP(E\$34,\$G\$65:\$I\$69,2)*\$D51)+(VLOOKUP(E\$34,\$G\$65:\$I\$69,3)*\$D57)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$D51)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D57)	=(VLOOKUP(G\$34,\$G\$65;\$ \$69,2)*\$D50)+(VLOOKUP(G\$34,\$G\$65;\$ \$69
43 44		=D52 =D53	-(VEOOKUP(D\$34,3G\$65:\$I\$69,2) \$D52)+(VEOOKUP(D\$34,\$G\$65:\$I\$69,3) \$D58)	=(VLOOKUP(E\$34,\$G\$65;\$I\$69,2)*\$D52)+(VLOOKUP(E\$34,\$G\$65;\$I\$69,3)*\$D58)	=(VLOOKUP(F\$34,\$G\$65:\$I\$69,2)*\$D52)+(VLOOKUP(F\$34,\$G\$65:\$I\$69,3)*\$D58)	={VLOOKUP{G\$34,\$G\$65;\$ \$69,2)*\$D51}+{VLOOKUP{G\$34,\$G\$65;\$ \$66 ={VLOOKUP{G\$34,\$G\$65;\$ \$69,2}*\$D52}+{VLOOKUP{G\$34,\$G\$65;\$ \$66
45	24-1100I	=053	=(VLOOKUP(D\$34,\$G\$65:\$I\$69,2)*\$D53)+(VLOOKUP(D\$34,\$G\$65:\$I\$69,3)*\$D59)			=(VLOOKUP(G\$34,\$G\$65:\$I\$69,2)*\$D53)+(VLOOKUP(G\$34,\$G\$65:\$I\$69
	Procedure Inter	mediate Calc	ulatione:			-(*EOOROF(G\$34,5G\$05:51509,2) 3D33)+(*EOOROF(G\$34,5G\$05:51565
47	toogaal a meet	mediate date				
	-year, 1-hour		=-0.011+(0.942"(\$F\$5^2)/\$F\$6)			
	-year, 2-hour		=0.341*(\$F\$5)+0.659*(\$D\$48)		2-year, 5-min	
50 2	-year, 3-hour		=0.569*(\$F\$5)+0.431*(\$D\$48)		2-year, 10-min	
51 2	-year, 6-hour		=F5		2-year, 15-min	
52 2	-year, 12-hour		=0.5*(\$F\$5)+0.5*(\$F\$6)		2-year, 30-min	
53.2	-year, 24-hour		≈F6		100-year, 5-min	
54 1	00-year, 1-hour		=0.494+(0.755*(\$F\$7^2)/\$F\$8)		100-year, 10-min	
55 1	00-year, 2-houi		=0.341*(\$F\$7)+0.659*(\$D\$54)		100-year, 15-min	
56 1	00-year, 2-hou 00-year, 3-hou 00-year, 6-hou		=0.569*(\$F\$7)+0.431*(\$D\$54)		100-year, 30-min	
57 1	00-year, 6-houi		=F7			
58 1	00-year, 12-hoi		=0.5*(\$F\$7)+0.5*(\$F\$8)			
	00-year, 24-hoi		=F8			
60					·	
62 P	rocedure Look-	up Lables:				
62 63 64 65 66 67 68 69 70 71 72 73	г	Duration				
64		(Minutes)	Zone F	Ratio	ז	Frequency
65	-		0.35	3		(N-уг)
66		1).34		5
67				0.51		10
68				0.62		25
69	15			9.82 9.3		50
70	1			J.3 J.46		500
71		1		.59		
72	3		°	.8		
73						

	Н	
	400	500
	100	500
	=H35/\$B18 =H36/\$B19	=135/\$B18
	=H37/\$B20	=I36/\$B19 =I37/\$B20
	=H38/\$B21	=138/\$B21
	=H39/\$B22	=139/\$822
	=H40/\$B23	=140/\$823
	=H41/\$B24	=l41/\$B24
	=H42/\$B25	=142/\$825
	=H43/\$B26	=143/\$B26
-	=H44/\$B27	=I44/\$B27
		that when a second s
	100	500
\$I\$69,3)*\$H52)	=H52	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H48)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$H52)
\$I\$69,3)*\$H53)	=H53	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H49)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$H52)
		=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H50)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$H54)
\$I\$69,3)*\$H54)	=H54	
	=H55	
\$I\$69,3)*\$H55) \$I\$69,3)*\$D54)		<pre>(VLOOKUP(IS34,SS655(SS69,2)*IS1)+(VLOOKUP(IS34,SG565(SI569,3)*SI55) =(VLOOKUP(IS34,SS65(SS69,2)*IS1)+(VLOOKUP(IS34,SG565(SI569,3)*SI55) =(VLOOKUP(IS34,SG565(SI569,2)*SD44)+(VLOOKUP(IS34,SG565(SI569,3)*SD54)</pre>
\$I\$69,3)*\$H55) \$I\$69,3)*\$D54) \$I\$69,3)*\$D55)	=H55 ≈D54 ≂D55	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D48)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$D54) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65:\$I\$69,3)*\$D55)
\$ \$69,3)*\$H55) \$ \$69,3)*\$D54) \$ \$69,3)*\$D55) \$ \$69,3)*\$D56)	=H55 =D54 =D55 =D56	=(VLOOKUP(I\$34,SG\$65:SI\$69,2)*SH51)+(VLOOKUP(I\$34,SG\$65:SI\$69,3)*SH55) =(VLOOKUP(I\$34,SG\$65:SI\$69,2)*SD48)+(VLOOKUP(I\$34,SG\$65:SI\$69,3)*SD54) =(VLOOKUP(I\$34,SG\$65:SI\$69,2)*SD49)+(VLOOKUP(I\$34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(I\$34,SG\$65:SI\$69,2)*SD50)+(VLOOKUP(I\$34,SG\$65:SI\$69,3)*SD56)
\$1\$69,3)*\$H54) \$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D55) \$1\$69,3)*\$D57) \$1\$69,3)*\$D57)	=H55 ≈D54 ≈D55 ≈D56 =D57	=(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D51)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D51)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D52)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57)	=H55 ≈D54 ≈D55 ≈D56 =D57	=(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$C\$65:\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D51)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56) =(VLOOKUP(I\$34,\$C\$65:\$I\$69,2)*\$D51)+(VLOOKUP(I\$34,\$C\$65:\$I\$59,3)*\$D56)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D52)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D52)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59	=(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$H51)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$H55) =(VLOOKUP(I\$34,\$G\$65:\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D49)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D56) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D50)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57) =(VLOOKUP(I\$34,\$G\$65;\$I\$69,2)*\$D52)+(VLOOKUP(I\$34,\$G\$65;\$I\$69,3)*\$D57)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =JF(\$F\$10=6,f	=(VLOOKUP(IS34,SGS65:SIS69,2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD48)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD54) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD58) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD58) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) D65*SD\$48,E65*SD\$48)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SG\$65:SIS69_2)*SH51)+(VLOOKUP(IS34,SG\$65:SIS69.3)*SH55) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD48)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD54) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD49)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD55) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD50)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD51)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD58) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD58) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) D65*SD\$48,E65*SD\$48) D66*SD\$48,E66*SD\$48) D67*SD\$48,E66*SD\$48)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69,2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) DS5*SD548,E65*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD544) D66*SD54,E66*SD544) D66*SD54,E66*SD545)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69_2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) D65*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD544) D70*SD554,E70*SD554)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69_2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69.3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69.3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) =(SS552)S48,E65*SD548) D65*SD548,E66*SD548) D66*SD548,E66*SD544) D68*SD548,E66*SD544) D70*SD54,E71*SD554)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69,2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) D65*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548) D66*SD548,E66*SD548)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69_2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69.3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69.3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD49)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) =(SS552)S48,E65*SD548) D65*SD548,E66*SD548) D66*SD548,E66*SD544) D68*SD548,E66*SD544) D70*SD54,E71*SD554)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=(VLOOKUP(IS34,SGS65:SIS69,2)*SH51)+(VLOOKUP(IS34,SGS65:SIS69,3)*SH55) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD48)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD54) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD56) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD50)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD57) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD52)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD58) =(VLOOKUP(IS34,SGS65:SIS69,2)*SD53)+(VLOOKUP(IS34,SGS65:SIS69,3)*SD59) =(SS52)S48,E65*SD548) D65*SD548,E66*SD548) D66*SD548,E66*SD544) D68*SD548,E66*SD544) D70*SD54,E71*SD554)
\$1\$69,3)*\$H55) \$1\$69,3)*\$D54) \$1\$69,3)*\$D55) \$1\$69,3)*\$D56) \$1\$69,3)*\$D56) \$1\$69,3)*\$D57) \$1\$69,3)*\$D58)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =IF(\$F\$10=6,1 =IF(\$F\$10=6,1 =IF(\$F\$10=6,1 =IF(\$F\$10=6,0 =IF(\$F\$10=6,0 =IF(\$F\$10=6,0) =IF(\$F\$10=6,0)	=(VLOOKUP(IS34,SG565:SIS69,2)*SH51)+(VLOOKUP(IS34,SG565:SIS69,3)*SD54) =(VLOOKUP(IS34,SG565:SIS69,2)*SD48)+(VLOOKUP(IS34,SG565:SIS69,3)*SD55) =(VLOOKUP(IS34,SG565:SIS69,2)*SD50)+(VLOOKUP(IS34,SG565:SIS69,3)*SD56) =(VLOOKUP(IS34,SG565:SIS69,2)*SD50)+(VLOOKUP(IS34,SG565:SIS69,3)*SD56) =(VLOOKUP(IS34,SG565:SIS69,2)*SD50)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53)+(VLOOKUP(IS34,SG565;SIS69,3)*SD58) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53)+(VLOOKUP(IS34,SG565;SIS69,3)*SD58) =(VLOOKUP(IS34,SG5;SIS69,2)*SD54) =(VLOOKUP(IS34,SG5;SIS69,2)*SD54)
\$1569.3) *5H55 \$1569.3) *5D54 \$1569.3] *5D55 \$1569.3] *5D56 \$1569.3] *5D56 \$1569.3] *5D57 \$1569.3] *5D59 \$1569.3] *5D59	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =F(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C	=(VLOOKUP(IS34,SG565:SIS69,2)*SH51)+(VLOOKUP(IS34,SG565:SIS69,3)*SH55) =(VLOOKUP(IS34,SG565:SIS69,2)*SD48)+(VLOOKUP(IS34,SG565:SIS69,3)*SD56) =(VLOOKUP(IS34,SG565:SIS69,2)*SD50)+(VLOOKUP(IS34,SG565:SIS69,3)*SD56) =(VLOOKUP(IS34,SG565:SIS69,2)*SD50)+(VLOOKUP(IS34,SG565:SIS69,3)*SD57) =(VLOOKUP(IS34,SG565:SIS69,2)*SD52)+(VLOOKUP(IS34,SG565:SIS69,3)*SD57) =(VLOOKUP(IS34,SG565:SIS69,2)*SD52)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG565:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55) =(SG550S48,E67*SD548) =(SG550S48,E67*SD544) =(SG550S48,E67*SD554) =(SG565,SIS64,E77*SD554) =(SG550S48,E77*SD554) =(SG550S48,E77*SD554) =(SG565,SIS64,E77*SD554) =(SG550S48,E77*SD554
SIS69,3)*SH55) SIS69,3)*SD54 SIS69,3)*SD56 SIS69,3)*SD56 SIS69,3)*SD57) SIS69,3)*SD59 SIS69,3)*SD59 SIS69,3)*SD59 SIS69,3)*SD59	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C =IF(\$F\$10=6,C) =IF(\$F\$10=6,C =IF(\$F\$10=6,C)=IF(\$F\$10=6,C) =IF(\$F\$10=6,C)=IF(=(VLOOKUP(IS34,SG\$65:SIS69,2)*SH51)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SH55) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD48)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD50)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD50)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD58) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD58) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) D65*SD\$48,E65*SD\$48) D65*SD\$48,E66*SD\$48) D66*SD\$48,E66*SD\$48) D66*SD\$48,E66*SD\$48) D66*SD\$54,E70*SD\$54) D70*SD\$54,E70*SD\$54) D72*SD\$54,E72*SD\$54) D72*SD\$54,E72*SD\$54)
\$1569,3)*5H55j \$1659,3)*5D55j \$1569,3)*5D55j \$1569,3)*5D56j \$1569,3]*5D57j \$1569,3]*5D57j \$1569,3]*5D59j \$1569,3]*5D59j \$1569,3]*5D59j	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,1 =IF(\$F\$10=6,1 =IF(\$F\$10=6,1 =IF(\$F\$10=6,0 =IF(\$F\$10=6,0 =IF(\$F\$10=6,0)=IF(\$F\$10=6,0) =IF(\$F\$10=6,0)=IF(\$F\$10=6,0) =IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=IF(\$F\$10=6,0)=	=(VLOOKUP(IS34,SG56:SIS69,2)*SH51)+(VLOOKUP(IS34,SG56:SIS69,3)*SH55) =(VLOOKUP(IS34,SG56:SIS69,2)*SD48)+(VLOOKUP(IS34,SG56:SIS69,3)*SD54) =(VLOOKUP(IS34,SG56:SIS69,2)*SD49)+(VLOOKUP(IS34,SG56:SIS69,3)*SD55) =(VLOOKUP(IS34,SG56:SIS69,2)*SD50)+(VLOOKUP(IS34,SG56:SIS69,3)*SD56) =(VLOOKUP(IS34,SG56:SIS69,2)*SD51)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG565:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56))50*SD548,E66*SD548))50*SD548,E66*SD548))50*SD548,E66*SD544))50*SD548,E70*SD554))70*SD554,E70*SD554))70*SD554,E70*SD554))72*SD554,E72*SD554))72*SD554,E72*SD554)
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D56 =D57 =D58 =D59 =F(\$F\$10=6,C =IF(\$F\$10=6,C) =IF(\$F\$10=6,C)=IF(\$F\$10=6,C) =IF(\$F\$10=6,C)=IF(\$F\$10=6,C)=IF(\$F\$10=6,	=(VLOOKUP(IS34,SG56:SIS69,2)*SH51)+(VLOOKUP(IS34,SG55:SIS69,3)*SH55) =(VLOOKUP(IS34,SG56:SIS69,2)*SD48)+(VLOOKUP(IS34,SG55:SIS69,3)*SD56) =(VLOOKUP(IS34,SG56:SIS69,2)*SD50)+(VLOOKUP(IS34,SG56:SIS69,3)*SD56) =(VLOOKUP(IS34,SG56:SIS69,2)*SD50)+(VLOOKUP(IS34,SG56:SIS69,3)*SD57) =(VLOOKUP(IS34,SG56:SIS69,2)*SD52)+(VLOOKUP(IS34,SG56:SIS69,3)*SD57) =(VLOOKUP(IS34,SG56:SIS69,2)*SD52)+(VLOOKUP(IS34,SG56:SIS69,3)*SD58) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG56:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53)+(VLOOKUP(IS34,SG56:SIS69,3)*SD59) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53)+(VLOOKUP(IS34,SG56;SIS69,3)*SD59) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53) =(VLOOKUP(IS34,SG55;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,SG5;SIS69,2)*SD53) =(VLOOKUP(IS34,S
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SIS69,2)*SH51)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SH55) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD48)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD54) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD50)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD50)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD57) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD52)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$65:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SIS69,3)*SD59) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53) =(VLOOKUP(IS34,SG\$55:SIS69,2)*SD53) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD54) =(VLOOKUP(IS34,SG\$55;SD
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD43)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI\$69,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,SG\$65:SI\$69,2)*SD54) =(VLOOKUP(IS34,S
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD43)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD43)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34
SIS69.3) 'SH55) SIS69.3) 'SD54) SIS69.3) 'SD56) SIS69.3) 'SD56) SIS69.3) 'SD57) SIS69.3) 'SD59) SIS69.3) 'SD59) SIS69.3) 'SD59)	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD43)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34
SI\$69.3)*SH55j SI\$69.3)*SD53 SI\$69.3)*SD56j SI\$69.3)*SD56j SI\$69.3)*SD58j SI\$69.3)*SD58j SI\$69.3)*SD59j SI\$69.3)*SD59j 	=H55 =D54 =D55 =D55 =D57 =D58 =D59 =D59 =IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[=IF(\$F\$10=6,[]F\$10=6,[]F	=(VLOOKUP(IS34,SG\$65:SI569,2)*SH51)+(VLOOKUP(IS34,SG\$65:SI569,3)*SH55) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD43)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD56) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD50)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD57) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD52)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$66:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53)+(VLOOKUP(IS34,SG\$65:SI569,3)*SD59) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$65:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34,SG\$69:SI569,2)*SD53) =(VLOOKUP(IS34

2/10/2009

Cholla Ash Monofill Cholla Generating Station Arizona Public Service

Site Specific IDF Graph

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydrology\Calculations\Rational Method\ADOT-IDF-Cholla-Ash-Monofill_2-9-09 2/10/2009 8:29 AM

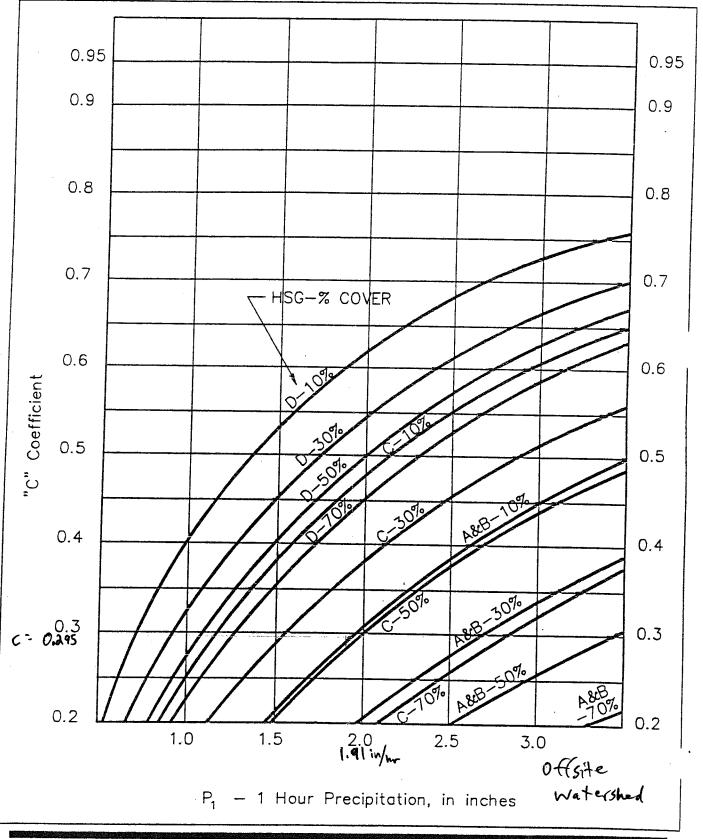
Project Name:	Cholla Power Pla			Date: Computed By:	02/06/09 MCW
Subject: Location:	25-Year Peak Dis Joseph City, AZ	charge Onsite		Checked By:	
25-yr, 24 25-yr, Length of I	- On-site Basin 4 hr Precipitation = 10 min Intensity = Hydrologic Zone = ongest Flowpath = Upper Elevation= Lower Elevation= Longest Flowpath = Kb =	2.22 in 4.48 in/hr 6 819 feet 0.16 miles 5230.00 feet 5086.00 feet 928.58 ft/mi 0.08	Q=CIA Des	C _D = I= Area = Total Area = sign Peak Flow =	0.60 4.48 in/hr 8.89 acres 8.89 acres 23.9 cfs
Construction of the Constr	-0.31 - 0.38 Calculated r) Tc (min) 4.5 4.9 5.3 6.2	OK*	Tc = L = Kb = S = I =	time of concentra length of longest watershed resista slope of longest average rainfall i	flowpath (miles) ance coefficient flowpath

Project Name: Subject: Location:	Cholla Power Pla 25-Year Peak Dis Joseph City, AZ			Date: Computed By: Checked By:	02/06/09 MCW
25-yr, 2 25-yr Length of	I - On-site Basin 5 4-hr Precipitation = , 10 min Intensity = Hydrologic Zone = Longest Flowpath = Upper Elevation= Lower Elevation= Longest Flowpath = Kb =	2.22 in 4.48 in/hr 6 629 feet 0.12 miles 5230.00 feet 5103.00 feet 1065.40 ft/mi 0.08	Q=CIA De	Area = 13.72	acres acres
	Calculated nr) Tc (min) 5 3.8 8 4.1 9 4.5 0 5.2		Tc = L = Kb = S = I =	time of concentration (length of longest flowpa watershed resistance of slope of longest flowpa average rainfall intensit	ath (miles) oefficient th

Project Name:	Cholla Power P			Date:	02/06/09 MCW
Subject: Location:	25-Year Peak Discharge Onsite Joseph City, AZ		Computed By: Checked By:		
Ash Fill Channe	el - On-site Basin 6		Q=CIA		1
25-vr. 2	24-hr Precipitation =	2.22 in		C _D = 0.60	
•	r, 10 min Intensity =	4.48 in/hr			
	Hydrologic Zone =	6			in/hr acres
Length of	f Longest Flowpath =	835 feet 0.16 miles		Total Area = 19.87	acres
	Upper Elevation= Lower Elevation=	5230.00 feet 5077.00 feet	Des	sign Peak Flow = 53.5	cfs
Slope o	f Longest Flowpath = Kb =	967.47 ft/mi 0.08			
0.50 0.52	S ^{-0.31} I ^{-0.38}				
Tc=11.4L ^{0.50} K _b ^{0.52}					
			Tc =	time of concentration (h	
T c=11.4L⁰⁰⁰K b ⁰⁰² Trials			L =	length of longest flowpa	ath (miles)
Trials	Calculated		L = Kb =	length of longest flowpa watershed resistance c	ath (miles) oefficient
Trials Tc (min) l(in/	Calculated hr)Tc (min)		L =	length of longest flowpa	ath (miles) oefficient th
Trials Tc (min) I(in/ 5 5.7	Calculated hr) Tc (min) 75 4.5	OK*	L = Kb = S =	length of longest flowpa watershed resistance c slope of longest flowpa	ath (miles) oefficient th
Trials Tc (min) l(in/	Calculated hr) Tc (min) 75 4.5 18 4.9	OK*	L = Kb = S =	length of longest flowpa watershed resistance c slope of longest flowpa	ath (miles) oefficient th
Trials Tc (min) I(in/ 5 5.7 10 4.4 15 3.6 30 2,4	Calculated hr) Tc (min) 75 4.5 18 4.9 59 5.3 10 6.2	OK*	L = Kb = S =	length of longest flowpa watershed resistance c slope of longest flowpa	ath (miles) oefficient th
Trials Tc (min) I(in/ 5 5.7 10 4.4 15 3.6	Calculated hr) Tc (min) 75 4.5 18 4.9 59 5.3 10 6.2	OK*	L = Kb = S =	length of longest flowpa watershed resistance c slope of longest flowpa	ath (miles) oefficient th
Trials Tc (min) l(in/ 5 5.7 10 4.4 15 3.6 30 2.4 60 1.4	Calculated hr) Tc (min) 75 4.5 18 4.9 59 5.3 10 6.2		L = Kb = S =	length of longest flowpa watershed resistance c slope of longest flowpa	ath (miles) oefficient th

Project Name:	Cholla Power Pla	nt- Ash Fill		Date:	02/06/09
Subject: Location:	25-Year Peak Dis Joseph City, AZ	charge Onsite		Computed By: Checked By:	MCW
25-yr, 2 25-y Length o	el - On-site Basin 7 24-hr Precipitation = r, 10 min Intensity = Hydrologic Zone = f Longest Flowpath = Lower Elevation= f Longest Flowpath = Kb =	2.22 in 4.48 in/hr 6 475 feet 0.09 miles 5227.00 feet 5115.00 feet 1246.02 ft/mi 0.08	Q=CIA Des	C _D = = Area = Total Area =	0.60 4.48 in/hr 4.67 acres 4.67 acres 12.6 cfs
10 4. 15 3.0 30 2. 60 1. Denot	2 S^{-0.31}I^{-0.38} Calculated /hr) Tc (min) 75 3.1 48 3.4 39 3.7	OK*	Tc = L = Kb = S = I =	time of concentr length of longes watershed resist slope of longest average rainfall	t flowpath (miles) tance coefficient flowpath

REFERENCES


TABLE 2-1 RESISTANCE COEFFICIENT (K_b) FOR USE WITH THE RATIONAL METHOD T_c EQUATION

		κ _b	
Description of Landform	Defined Drainage Network	Overland Flow Only	
Mountain, with forest and dense ground cover (overland slopes - 50% or greater)	0.15	0.30	
Mountain, with rough rock and boulder cover (overland slopes - 50% or greater)	0.12	0.25	
Foothills (overland slopes - 10% to 50%)	0.10	0.20	
Alluvial fans, Pediments and Rangeland (overland slopes - 10% or less)	0.05	0.10 €	- Kb
Irrigated Pasture ^a		0.20	
Tilled Agricultural Fields ^a		0.08	
URBAN Residential, L is less than 1,000 ft ^b Residential, L is greater than 1,000 ft ^b Grass; parks, cemeteries, etc. ^a Bare ground; playgrounds, etc. ^a Paved; parking lots, etc. ^a	0.04 0.025 	 0.20 0.08 0.02	

Notes:

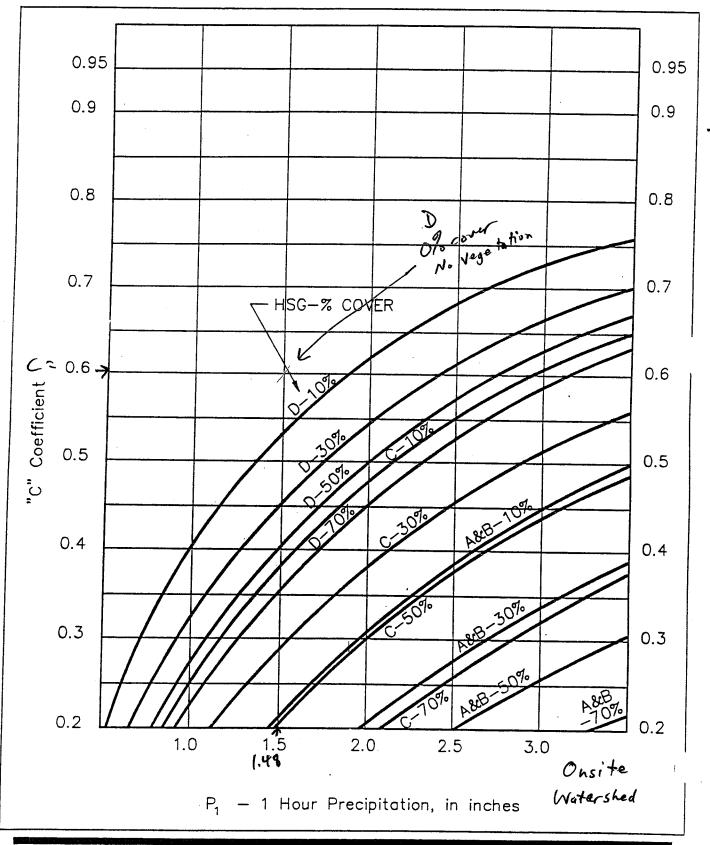

a - No defined drainage network.
b - L is length in the T_c equation. Streets serve as drainagae network.

FIGURE 2-5 RATIONAL "C" COEFFICIENT UPLAND RANGELAND (GRASS & BRUSH)

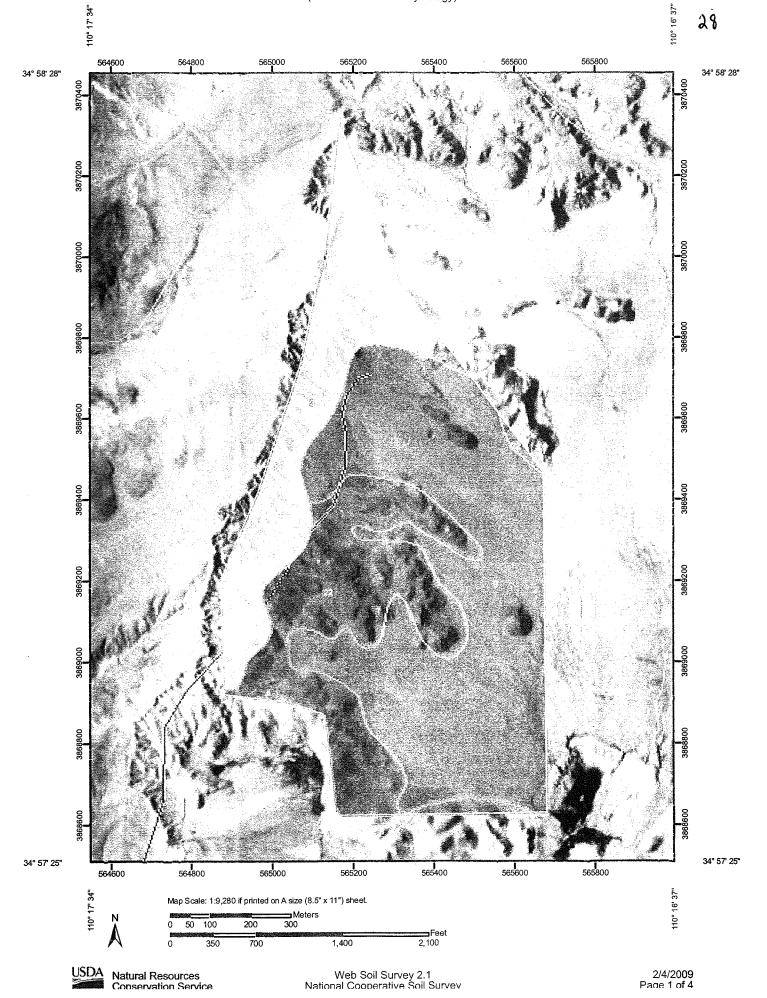

AS A FUNCTION OF RAINFALL DEPTH, HYDROLOGIC SOIL GROUP (HSG), AND % OF VEGETATION COVER

FIGURE 2-5 RATIONAL "C" COEFFICIENT UPLAND RANGELAND (GRASS & BRUSH)

AS A FUNCTION OF RAINFALL DEPTH, HYDROLOGIC SOIL GROUP (HSG), AND % OF VEGETATION COVER

MARCH 1993

OI) f Interest (AOI)	Map Scale: 1:9,280 if printed on A size (8.5" × 11") sheet. The soil surveys that comprise your AOI were mapped at 1:24,000
f Interest (AOI)	The soil surveys that comprise your $\Delta\Omega$ were mapped at 1:24 $\Omega\Omega$
	The soll surveys that complise your Act were mapped at 1.24,000
ap Units	Please rely on the bar scale on each map sheet for accurate map measurements.
	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 12N NAD83
	This product is generated from the USDA-NRCS certified data as on the version date(s) listed below.
	Soil Survey Area: Navajo County Area, Arizona, Central Part Survey Area Data: Version 10, Sep 11, 2008
	Date(s) aerial images were photographed: 6/21/1997
	The orthophoto or other base map on which the soil lines were
ed or not available	compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shiftin
	of map unit boundaries may be evident.
	•
is and Canais	
ate Highways	
n m o	

م م

Soil Properties and Qualities

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
3	Badland-Torriorthents association, 1 to 30 percent slopes		43.8	21.4%
9	Burnswick sandy clay loam, 1 to 5 percent slopes	В	106.0	51.7%
21	Grieta sandy loam, 3 to 10 percent slopes	В	0.2	0.1%
22	Gypsiorthids-Torriorthents association, 5 to 60 percent slopes	В	55.0	26.8%
Totals for Area of I	nterest	205.0	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Pre-Development

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Assumed Post-Jevelopment

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Lower

OFF-SITE HYDROLOGY

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

Project Name:	Cholla Power Pla	nt- Ash Fill		Date:	02/03/09
Subject:	100-Year Peak Di	scharge		Computed By:	MCW
Location:	Joseph City, AZ			Checked By:	
100-yr, 2 100-yr Length of	I - Pre-development Ba 4-hr Precipitation = , 10 min Intensity = Hydrologic Zone = Longest Flowpath = Lopper Elevation= Lower Elevation= Kb =	sin Off-1 2.77 in 5.73 in/hr 6 2,963 feet 0.56 miles 5197.00 feet 5068.00 feet 229.85 ft/mi 0.10	Q=CIA Des	= 4. Area = 39. Total Area = 39.	30 60 in/hr 63 acres 63 acres 3.8 cfs
Tc=11.4L ^{0.50} K _b ^{0.52} S Trials Tc (min) I(in/h 5 7.3- 15 4.7- 16 4.6(30 3.1(60 1.9)	Calculated ar) Tc (min) 4 13.4 4 15.9 0 16.1 0 18.7	OK	Tc = L = Kb = S = I =	time of concentratior length of longest flov watershed resistance slope of longest flow average rainfall inter	vpath (miles) e coefficient path

Project Name:	Cholla Power Pl	ant- Ash Fill		Date:	02/03/09
Subject: Location:	100-Year Peak D Joseph City, AZ	-		Computed By: Checked By:	MCW
100-yr, 24 100-yr, H Length of L	Pre-development Bather -hr Precipitation = 10 min Intensity = Hydrologic Zone = ongest Flowpath = Lower Elevation= ongest Flowpath = Kb =	2.77 in 5.73 in/hr 6	Q=CIA Desi	Area = 49.27 Total Area = 49.27	in/hr acres acres
Tc=11.4L ^{0.50} K _b ^{0.52} S ⁻⁰ Trials Tc (min) I(in/hr) 5 7.34 15 4.74 18 4.30 30 3.10 60 1.91	0.31 _I -0.38 Calculated	OK	Tc = L = Kb = S = I =	time of concentration (length of longest flowpa watershed resistance of slope of longest flowpa average rainfall intensit	ath (miles) oefficient th

Project Name: Subject: Location:	Cholla Power P 100-Year Peak I Joseph City, AZ	Discharge		Date: Computed By: Checked By:	02/03/09 MCW
100-yr, 10 Hyd Length of Lor Ur Lo	Pre-development B Precipitation = min Intensity = drologic Zone =	2.77 in 5.73 in/hr 6 4,497 feet 0.85 miles 5245.00 feet 5079.00 feet 194.89 ft/mi	Q=CIA De	Area = 59.6 Total Area = 59.6	0 0 in/hr 5 acres 5 acres 9 cfs
Tc=11.4L ^{0.50} K _b ^{0.52} S ^{-0.31} Trials Tc (min) I(in/hr) 5 7.34 15 4.74 22 3.80 30 3.10 60 1.91	Calculated Tc (min) 17.4 20.6 22.4 24.2 29.1 formation that nee	OK ds to be entered.	Tc = L = Kb = S = I =	time of concentration (length of longest flowp watershed resistance of slope of longest flowpa average rainfall intensi	ath (miles) coefficient ath

Project Name:	Cholla Power Pla	nt- Ash Fill		Date:	02/03/09
Subject:	100-Year Peak Di	scharge		Computed By:	MCW
Location:	Joseph City, AZ			Checked By:	
100-yr, 2 100-yr	- Post Development O 4-hr Precipitation = , 10 min Intensity = Hydrologic Zone = Longest Flowpath =	ff-1 2.77 in 5.73 in/hr 6 1,357 feet 0.26 miles 5192.00 feet	Q=CIA	Area = 14.*	30 73 in/hr 10 acres 10 acres
	Lower Elevation= Longest Flowpath = Kb =	5121.00 feet 276.26 ft/mi 0.10	Desig	n Peak Flow =23	<u>.8</u> cfs
Tc=11.4L ^{0.50} K _b ^{0.52} S Trials Tc (min) I(in/r 5 7.3 9 6.0 10 5.7 15 4.7 30 3.1 60 1.9	Calculated nr) Tc (min) 4 8.6 0 9.3 3 9.4 4 10.1 0 11.9	OK*	Tc = L = Kb = S = I =	time of concentration length of longest flow watershed resistance slope of longest flowp average rainfall intens	path (miles) coefficient ath
	es information that need owed Tc = 10 minutes	ls to be entered.			

Project Name:Cholla Power Plant- Ash FillSubject:100-Year Peak DischargeLocation:Joseph City, AZ	Date: 02/03/0 Computed By: MCW Checked By:
Ash Fill Channel - Post Development Off-2 100-yr, 24-hr Precipitation = 2.77 in 100-yr, 10 min Intensity = 5.73 in/hr Hydrologic Zone = 6 Length of Longest Flowpath = 2,076 feet 0.39 miles Upper Elevation= 5210.00 feet Lower Elevation= 5118.00 feet Slope of Longest Flowpath = 233.99 ft/mi Kb = 0.10	Q=CIA $C_{50B} = 0.30$ I = 5.00 in/hr Area = 34.4 acres Total Area = 34.4 acres Design Peak Flow = 50.7 cfs
Kb = 0.10 Tc=11.4L ^{0.50} K _b ^{0.52} S ^{-0.31} I ^{-0.38} Trials Calculated Tc (min) l(in/hr) Tc (min) 5 7.34 11.2 13 5.00 13.0 OK 15 4.74 13.2 30 3.10 15.5 60 1.91 18.7 Denotes information that needs to be entered.	Tc = time of concentration (hrs) L = length of longest flowpath (miles) Kb = watershed resistance coefficient S = slope of longest flowpath I = average rainfall intensity (in/hr)

Project Name:	Cholla Power Plan	t- Ash Fill		Date:	02/03/09
Subject:	100-Year Peak Dise	charge		Computed By:	MCW
Location:	Joseph City, AZ			Checked By:	
100-yr, 100- <u>-</u> Length of L	- Post Development Off- 24-hr Precipitation = yr, 10 min Intensity = Hydrologic Zone = -ongest Flowpath = Lower Elevation= Lower Elevation= Lower Flowpath = Kb =	2.77 in 5.73 in/hr 6 3,505 feet 0.66 miles 5245.00 feet 5119.00 feet 189.81 ft/mi	Q=CIA Des		0.30 4.20 in/hr 49.19 acres 49.19 acres 60.9 cfs
Γc=11.4L^{0.50}K_b^{0.52}S⁻ Trials Tc (min) I(in/h 5 7.34 15 4.74 19 4.20 30 3.10 60 1.91	0.31 _I -0.38 Calculated r) Tc (min) 15.5 18.3 19.2 21.5	OK	Tc = L = Kb = S = I =	time of concentrati length of longest fl watershed resistar slope of longest flo average rainfall int	owpath (miles) nce coefficient owpath

.

Hydrograph Data Based on Site Specific Watershed and Rainfall Data FORMULAS

	А	В	С	D	E	F	G	Н		J
1	Project Name:		Cholla Power Plant- Ash Fill				Date:		39847	
2	Subject:		100-Year Peak Discharge				Computed By:		M	CW
3	Location:		Joseph City, AZ				Checked By:			
4										
5	Ash Fill Chann	el - Pre-development Dr	ainage Area 1			Q=CIA				
6							C _{50B} =	0.295		
7	100	-yr, 6-hr Precipitation =		='IDF Data'!H42	in		C =	0		
8		100-yr, 10 min Intensity		='IDF Data'!H19	in/hr		C _{Composite} =	=(H6*H10+H7*H11)/H12	2	
9		Hydrologic Zone -		='IDF Data'!F10				=B26	in/hr	
10		, 0				50B Area =		59.65	acres	
11						Area =		0	acres	
12	Leng	th of Longest Flowpath =		4497.4	feet	Total Area =		=H10+H11	acres	
13	Marena a contracto atalia	an a	De la compañía de la compañía de la compañía de paísica de la compañía de la compañía de compañía de la compañí	=D12/5280	miles					
14 15		Upper Elevation= Lower Elevation=	en Sambaredo en energia en este a compañía en este a ser este entre entre entre entre entre entre entre entre e	5245 5079	feet feet	Design Peak Flow =		=H8*H9*H12	cfs	
16	900-00-00-00-00-00-00-00-00-00-00-00-00-	be of Longest Flowpath =			0 T T T T	Design reak now -			=	
16 17	30	e of Longest Flowpath -		= 0.1	S INTRE					
18				•••••••••••••••••••••••••••••••••••••••						
19	Tc=11.4L ^{0.50} K	0.52 S ^{-0.31} F ^{0.38}								
19 20 21						Tc =	time of concer	ntration (hrs)		
21	Trials					L =	length of longe	est flowpath (miles)		
22 23 24 25 26			Calculated			Kb =		istance coefficient		
23	Tc (min)	l(in/hr)	Tc (min)			S =	slope of longe	•		
24	5		=(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B24^-0.38)*60			1 =	average rainfa	all intensity (in/hr)		
25	15	='IDF Data'IH20	=(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B25^-0.38)*60	014						
26	22	3.8 3.1	=(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B26^-0.38)*60 =(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B27^-0.38)*60	OK						
$\frac{2}{28}$	30 60	그렇게 이 것 같아요. 이 가지 않았는 것 같아요.	=(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B28^-0.38)*60 =(11.4*\$D\$13^0.5*\$D\$17^0.52*\$D\$16^-0.31*B28^-0.38)*60							
29	00	1.91								
30										
31	14.111.11114	Denotes information that	at needs to be entered.							
28 29 30 31 32										

2

APPENDIX C

HYDRAULC CALCULATIONS

APPENDIX C

HYDRAULC CALCULATIONS

ON-SITE HYDRAULIC CALCULATIONS

ON-SITE CHANNEL

NORMAL DEPTH CALCULATIONS

Worksheet for DROP Onsite SOUTH channel(25 cfs-5:1)

Project Description

Manning Formula Normal Depth
0.035 0.20000 ft/ft 2.50 ft/ft (H:V) 2.50 ft/ft (H:V)
10.00 ft 25.00 ft³/s
0.29 ft 3.14 ft ² 11.58 ft 11.46 ft 0.55 ft 0.02311 ft/ft 7.96 ft/s 0.98 ft 1.28 ft 2.68 Supercritical 0.00 ft 0.00 ft 0.00 ft 0.00 ft 0.00 ft
0.00 ft
0.00 ft Infinity ft/s Infinity ft/s 0.29 ft 0.55 ft 0.20000 ft/ft 0.02311 ft/ft

2/12/2009 4:58:42 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page
 1
 0f
 1

Worksheet for Onsite SOUTH channel (25 cfs - 1.6% slope)

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.01600	ft/ft
Left Side Slope	2.50	ft/ft (H∶V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	10.00	ft
Discharge	25.00	ft³/s
Results	andro andro Santa andro Santa andro andro andro andro Santa andro	
Normal Depth	0.61	ft
Flow Area	7.09	ft²
Wetted Perimeter	13.31	ft
Top Width	13.07	ft
Critical Depth	0.55	ft
Critical Slope	0.02311	ft/ft
Velocity	3.53	ft/s
Velocity Head	0.19	ft
Specific Energy	0.81	ft
Froude Number	0.84	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
_ength	0.00	ft
Number Of Steps	0	
GVF Output Data		
Jpstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Jpstream Velocity	Infinity	ft/s
Iormal Depth	0.61	ft .
Critical Depth	0.55	ft
Channel Slope	0.01600	ft/ft
Critical Slope	0.02311	ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2/12/2009 4:58:02 PM

Worksheet for DROP STRUCTURE Onsite sec-1(95 cfs-5:1)

Project Description	
Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	
Roughness Coefficient	0.035
Channel Slope	0.20000 ft/ft
Left Side Slope	2.50 ft/ft (H:V)
Right Side Slope	2.50 ft/ft (H:V)
Bottom Width	10.00 ft
Discharge	95.00 ft³/s
Results	
Normal Depth	0.64 ft
Flow Area	7.43 ft ²
Wetted Perimeter	13.45 ft
Top Width	13.20 ft
Critical Depth	1.26 ft
Critical Slope	0.01845 ft/ft
Velocity	12.79 ft/s
Velocity Head	2.54 ft
Specific Energy	3.18 ft
Froude Number	3.01
-low Type	Supercritical
GVF Input Data	
Downstream Depth	0.00 ft
_ength	0.00 ft
Number Of Steps	0
GVF Output Data	
Jpstream Depth	0.00 ft
Profile Description	
Profile Headloss	0.00 ft
ownstream Velocity	Infinity ft/s
Ipstream Velocity	Infinity ft/s
lormal Depth	0.64 ft
Critical Depth	1.26 ft
hannel Slope	. 0.20000 ft/ft
ritical Slope	0.01845 ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2/12/2009 2:53:50 PM

Worksheet for Onsite channel sec-1(95 cfs - 0.885% slope) **Project Description** Friction Method Manning Formula Solve For Normal Depth Input Data **Roughness Coefficient** 0.035 **Channel Slope** 0.00885 ft/ft Left Side Slope 2.50 ft/ft (H:V) **Right Side Slope** 2.50 ft/ft (H:V) Bottom Width 10.00 ft Discharge 95.00 ft³/s Results Normal Depth 1.55 ft Flow Area 21.43 ft² Wetted Perimeter 18.32 ft Top Width 17.73 ft Critical Depth 1.26 ft Critical Slope 0.01845 ft/ft Velocity 4 4 3 ft/s Velocity Head 0.31 ft Specific Energy 1.85 ft Froude Number 0.71 Flow Type Subcritical **GVF** Input Data 요즘은 정희들은 물건 Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft **Profile Description Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.55 ft Critical Depth 1.26 ft Channel Slope 0.00885 ft/ft Critical Slope 0.01845 ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

2/12/2009 2:52:23 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for Onsite channel sec-2(95 cfs - 1.04% slope)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.01040	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H:V)
Bottom Width		10.00	ft
Discharge		95.00	ft³/s
Results			
Normal Depth		1.48	ft
Flow Area		20.25	ft²
Wetted Perimeter		17.96	ft
Top Width		17.39	ft
Critical Depth		1.26	ft
Critical Slope		0.01846	ft/ft
Velocity		4.69	ft/s
Velocity Head		0.34	ft
Specific Energy		1.82	ft
Froude Number		0.77	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.48	ft
Critical Depth		1.26	ft
Channel Slope		0.01040	ft/ft
Critical Slope		0.01846	ft/ft
		1	

2/12/2009 2:52:28 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

Worksheet for Onsite channel sec-3(95 cfs - 0.5% slope)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.035		
Channe! Slope	0.00500	ft/ft	
Left Side Slope	2.50	ft/ft (H:V)	
Right Side Slope	2.50	ft/ft (H:V)	
Bottom Width	10.00	ft	
Discharge	95.00	ft³/s	
Results			and a second
Normal Depth	1.80	ft	
Flow Area	26.19	ft²	
Wetted Perimeter	19.72	ft	
Top Width	19.02	ft	
Critical Depth	1.26	ft	
Critical Slope	0.01845	ft/ft	
Velocity	3.63	ft/s	
Velocity Head	0.20	ft	
Specific Energy	2.01	ft	
Froude Number	0.55		
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data			and the second standards
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	
Normal Depth	1.80	ft	
Critical Depth	1.26	ft	
Channel Slope	0.00500	ft/ft	
Critical Slope	0.01845	ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

2/12/2009 2:52:32 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Onsite channel sec-4(95 cfs - 1.0% slope)

Project Description

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.01000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	10.00	ft
Discharge	95.00	ft³/s
Results	en en de la companya	
Normal Depth	1.49	ft
Flow Area	20.54	ft ²
Wetted Perimeter	18.05	ft
Top Width	17.47	ft
Critical Depth	1.26	ft
Critical Slope	0.01845	ft/ft
Velocity	4.63	ft/s
Velocity Head	0.33	ft
Specific Energy	1.83	ft
Froude Number	0.75	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth Profile Description	0.00	ft
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1.49	ft
Critical Depth	1.26	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.01845	ft/ft

Bentley Systems, Inc. Haestad Methods Solution Center

2/12/2009 2:52:37 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley FlowMaster [08.01.071.00] Page 1 of 1

Worksheet for Onsite channel sec-5(40 cfs - 1.0% slope)

Project Description

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	0.01000	ft/ft
Left Side Slope	2.50	ft/ft (H:V)
Right Side Slope	2.50	ft/ft (H:V)
Bottom Width	10.00	ft
Discharge	40.00	ft³/s
Results		gen de argener de la presente
Normal Depth	0.92	ft
Flow Area	11.34	ft²
Wetted Perimeter	14.96	ft
Top Width	14.61	ft
Critical Depth	0.74	ft
Critical Slope	0.02127	ft/ft
Velocity .	3.53	ft/s
Velocity Head	0.19	ft
Specific Energy	1.11	ft
Froude Number	0.71	· ••
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	0.92	ft
Critical Depth	0.74	ft
Channel Slope	0.01000	ft/ft
Critical Slope	0.02127	ft/ft

2/12/2009 2:52:42 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page
 1
 of
 1

Worksheet for Onsite channel sec-6(40 cfs - 1.0% slope)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope	C	0.01000	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H:V)
Bottom Width		10.00	ft
Discharge		40.00	ft³/s
Results			
Normal Depth		0.92	ft
Flow Area		11.34	ft²
Wetted Perimeter		14.96	ft
Top Width		14.61	ft
Critical Depth		0.74	ft
Critical Slope	. 0	.02127	ft/ft
Velocity		3.53	ft/s
Velocity Head		0.19	ft
Specific Energy		1.11	ft
Froude Number		0.71	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity	I	Infinity	ft/s
Normal Depth		0.92	ft
Critical Depth		0.74	ft
Channel Slope	0.4	01000	ft/ft
Critical Slope	0.0	02127	ft/ft

2/12/2009 2:52:47 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page
 1
 0f
 1

Worksheet for DROP STRUCTURE Onsite Sec-7 (40 cfs-5:1)

Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.20000	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H∶V)
Bottom Width		10.00	ft
Discharge		40.00	ft³/s
Results			
Normal Depth		0.39	ft
Flow Area		4.24	ft²
Wetted Perimeter		12.08	ft
Top Width		11.93	ft
Critical Depth		0.74	ft
Critical Slope		0.02127	ft/ft
Velocity		9.44	ft/s
Velocity Head		1.39	ft
Specific Energy		1.77	ft
Froude Number		2.79	
Flow Type	Supercritical		
GVF Input Data	an a		
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		. 0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.39	ft
Critical Depth		0.74	ft
Channel Slope		0.20000	ft/ft
Critical Slope		0.02127	ft/ft

2/12/2009 2:53:05 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Onsite channel sec-7(40 cfs - 1.0% slope)

Project Description

Friction Method Solve For	Manning Formula	
Input Data		
Roughness Coefficient Channel Slope	0.035 0.01000	
Left Side Slope Right Side Slope	2.50 2.50	
Bottom Width	10.00) ft
Discharge	40.00) ft³/s
Results		
Normal Depth Flow Area	0.92 11.34	
Wetted Perimeter	14.96	
Top Width	14.61	
Critical Depth Critical Slope	0.74 0.02127	
Velocity	3.53	
Velocity Head Specific Energy	0.19 1.11	
Froude Number	0.71	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	
Length Number Of Steps	0.00	
GVF Output Data	· ·	
Upstream Depth	0.00	· • •
Profile Description	0.00	
Profile Headloss	0.00	
Downstream Velocity Upstream Velocity	Infinity Infinity	
Normal Depth	0.92	•
Critical Depth	0.74	
Channel Slope Critical Slope	0.01000 0.02127	
	5.52127	

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

2/12/2009 2:53:12 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for Onsite channel sec-8(40 cfs - 0.5% slope)

Project Description				
Friction Method	Manning Formula			
Solve For	Normal Depth			
Input Data				
Roughness Coefficient		0.035		
Channel Slope Left Side Slope		0.00500		
Right Side Slope		2.50		
Bottom Width		2.50 10.00		
Discharge			ft³/s	
- An an				
Results				
Normal Depth		1.12	ft	
Flow Area		14.35	ft²	
Wetted Perimeter		16.04	ft	
Top Width		15.60	ft	
Critical Depth		0.74	ft	
Critical Slope		0.02127	ft/ft	
Velocity		2.79	ft/s	
Velocity Head		0.12	ft	
Specific Energy		1.24	ft	
Froude Number		0.51		
Flow Type	Subcritical			
GVF Input Data		. 2		
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		1.12	ft	
Critical Depth		0.74	ft	
Channel Slope		0.00500	ft/ft	
Critical Slope		0.02127	ft/ft	

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

Page 1 of 1

2/12/2009 2:53:26 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Worksheet for Onsite channel sec-9(40 cfs - 0.5% slope)

Project Description

Friction Method	Manning Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.03	5
Channel Slope	0.0050	0 ft/ft
Left Side Slope	2.5	0 ft/ft (H:V)
Right Side Slope	2.5	0 ft/ft (H:V)
Bottom Width	10.0	0 ft
Discharge	40.0	0 ft³/s
Results		
Normal Depth	1.13	2 ft
Flow Area	14.3	5 ft²
Wetted Perimeter	16.04	4 ft
Top Width	15.60) ft
Critical Depth	0.74	t ft
Critical Slope	0.02127	⁷ ft/ft
Velocity	2.79) ft/s
Velocity Head	0.12	2 ft
Specific Energy	1.24	⊦ ft
Froude Number	0.51	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.00	ft ft
Length	0.00	ft
Number Of Steps	C	
GVF Output Data		
Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	
Upstream Velocity	Infinity	
Normal Depth	1.12	
Critical Depth	0.74	
Channel Slope	0.00500	ft/ft
Critical Slope	0.02127	ft/ft

2/12/2009 2:53:17 PM

Bentley Systems, Inc. Haestad Methods Solution CenterBentley FlowMaster [08.01.071.00]27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666Page 1 of 1

ON-SITE CHANNEL

RIP-RAP SIZING CALCULATIONS

Cholla Ash Monofill Riprap Comparison Onsite Channels Drop Structures

	Ch	olla Ast	n Monofi			nel Riprap	Rock Size (fee	et)			
			,	Metł	nod	1					
Onsite Channel	USACE (D30)	ASCE	USBR	USGS	ISBASH	HEC-11	Maricopa Cty	Min	Max	Chosen Rock Size (D50)	Layer Thickness (ft)
Section 1 (bank)	0.09	0.14	0.26	0.38	0.25	0.05	0.17	0.05	0.38	0.33	1.00
Section 1 (bottom)	0.09	0.13	0.26	0.38	0.25	0.04		0.04	0.38	0.33	1.00
Section 2 (bank)	0.11	0.16	0.29	0.43	0.28	0.06	0.17	0.06	0.43	0.33	1.00
Section 2 (bottom)	0.11	0.14	0.29	0.43	0.28	0.05		0.05	0.43	0.33	1.00
Section 3 (bank)	0.05	0.09	0.17	0.23	0.17	0.03	0.08	0.03	0.23	0.33	1.00
Section 3 (bottom)	0.05	0.09	0.17	0.23	0.17	0.02		0.02	0.23	0.33	1.00
Section 4 (bank)	0.10	0.15	0.29	0.42	0.27	0.06	0.17	0.06	0.42	0.33	1.00
Section 4 (bottom)	0.10	0.14	0.29	0.42	0.27	0.04		0.04	0.42	0.33	1.00
Section 5 (bank)	0.06	0.09	0.16	0.22	0.16	0.03	0.08	0.03	0.22	0.33	1.00
Section 5 (bottom)	0.06	0.08	0.16	0.22	0.16	0.02		0.02	0.22	0.33	1.00
Section 6 (bank)	0.06	0.09	0.16	0.22	0.16	0.03	0.08	0.03	0.22	0.33	1.00
Section 6 (bottom)	0.06	0.08	0.16	0.22	0.16	0.02		0.02	0.22	0.33	1.00
Section 7 (bank)	0.06	0.09	0.16	0.22	0.16	0.03	0.08	0.03	0.22	0.33	1.00
Section 7 (bottom)	0.06	0.08	0.16	0.22	0.16	0.02		0.02	0.22	0.33	1.00
Section 8 (bank)	0.03	0.05	0.10	0.12	0.10	0.01	0.08	0.01	0.12	0.33	1.00
Section 8 (bottom)	0.03	0.05	0.10	0.12	0.10	0.01		0.01	0.12	0.33	1.00
Section 9 (bank)	0.03	0.05	0.10	0.12	0.10	0.01	0.08	0.01	0.12	0.33	1.00
Section 9 (bottom)	0.03	0.05	0.10	0.12	0.10	0.01		0.01	0.12	0.33	1.00
Drop Struc On-sec 1-basin (bnk)	1.61	1.16	2.33	5.02	2.09	1.23	3.50	1.16	5.02	1.00*	2.00
Drop Struc On-sec 1-basin (btm)	1.61	1.07	2.33	5.02	2.09	0.92		0.92	5.02	1.00*	2.00
Drop Struc On-sec 7- 5:1(bnk)	0.85	0.63	1.24	2.39	1.14	0.50	1.83	0.50	2.39	1.00*	2.00
Drop Struc On-sec 7- 5:1(btm)	0.85	0.58	1.24	2.39	1.14	0.37		0.37	2.39	1.00*	2.00
SOUTH Channel											
Section 1 (bank)	0.07	0.09	0.16	0.22	0.16	0.03	0.08	0.03	0.22	0.33	1.00
Section 1 (bottom)	0.07	0.08	0.16	0.22	0.16	0.00	0.00	0.03	0.22	0.33	1.00
Drop Struc On-SOUTH-basin (bnk)	0.60	0.45	0.88	1.58	0.81	0.34	1.33	0.34	1.58	1.00*	. 2.00
Drop Struc On-SOUTH-basin (btm)	0.60	0.42	0.88	1.58	0.81	0.26	1.00	0.34	1.58	1.00*	2.00
*NOTE: All drop structures and basins	s will consi	st of arc	uted rip	ran							

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Riprap Sizing\RDS runs_comparison

By:_____ Checked:_____

Cholla Ash Monofill Riprap Calculation

1Calculation of Riprap Size for Channel Lining Calculations are based on Drainage Design Manual for Maricopa County (Manual)3Calculations are based on Drainage Design Manual for Maricopa County (Manual)4Channel Name: Design Flood Freque Location/Station: $32+50$ to $33+00$ 788Relevant Equations10 $d_{s_0} = \frac{0.001 V_s^A}{d_{ms}^A K_1^A}$ 11 $d_{s_0} = \frac{0.001 V_s^A}{d_{ms}^A K_1^A}$ 12 $d_{s_0} = \frac{0.001 V_s^A}{d_{ms}^A K_1^A}$ 13 $d_{s_0} = \frac{0.001 V_s^A}{d_{ms}^A K_1^A}$ 14 $d_{s_0} = \frac{0.001 V_s^A}{d_{ms}^A K_1^A}$ 15 $K_1 = \left[1 - \frac{\sin^2 \theta}{\sin^2 k}\right]^{n^2}$ 16 $d_{s_0} = - \text{Median diameter of the riprap materials, ft}$ 17 $V_a = - Average velocity in the main channel, ft's20d_{sog} = - \text{Median diameter of flow in the main channel, ft's21V_a = - Average velocity in the main channel, ft's22d_{mg} = - \text{Average velocity in the main channel, ft's23M_{sog} = - Riprap material's angle or repose, degree24\theta = $		A	В	С	D	E	F	G	Н	1		J	К
2 Calculations are based on Drainage Design Manual for Maricopa County (Manual) 3 Channel Name: Cholla Ash Onsite Drop Structure SOUTH channel 5 Design Flood Freque 100 -yr 6 Location/Station: 32+50 to 33+00 7 8 8 Relevant Equations 10 1 11 $d_{so} = \frac{0.001 V_s^3}{d_{ms}^3 K_1^{1.5}}$ 12 $d_{so} = \frac{0.001 V_s^3}{d_{ms}^3 K_1^{1.5}}$ 14 $K_1 = \begin{bmatrix} 1 - \frac{\sin^2 \theta}{\sin^2 \phi} \end{bmatrix}^{1.5}$ 15 Where. 20 $d_{so} = Median diameter of the riprap materials. ft 21 V_s = Average velocity in the main channel, ft/s 22 d_{so} = Average depth of flow in the main channel, ft/s 23 K_1 = Bank angle correction factor 24 \theta = Bank angle of repose, degree 25 \phi = \frac{7.96}{10.29} ft/s 28 Based on output from FlowMaster and based on the Manual) 31 V_s = \frac{7.96}{10.29} ft/s 33 \theta = \frac{21.80}{2.93} degree 2.5.1 (H:V) 34 \theta = \frac{21.80}{40.99} = \frac{1.25 ft}{1.00} degree 35 L_s = \frac{0.82}{1.00} (inch) = 16 inche sis stable. $	1	Calculat	ion of Ri	prap Size f	or Cha	annel Lin	ing		· · · · · · · · · · · · · · · · · · ·			L	
$\begin{array}{c cccc} 3 \\ \hline 4 \\ \hline 1 \\ \hline 3 \\ 3 \\$	2	Calculatio	ons are bas	ed on Draina	age Des	ign Manua	l for	Maricopa	County (M	anual)			
$\begin{array}{c c} \hline \\ \hline $	3							·		,			
5Design Flood Freque100 -yr10Location/Station:32+50 to 33+007888101111 $d_{su} = 0.001 V_s^*$ 13 $d_{su} = \frac{0.001 V_s^*}{d_{us}^* K_1^{1.5}}$ 14 $d_{su} = \frac{0.001 V_s^*}{d_{us}^* K_1^{1.5}}$ 15 $f_{su} = \frac{1}{2} \int_{us}^{us} K_1^{1.5}$ 16 $K_1 = \left[1 - \frac{\sin^2 \theta}{\sin^2 \phi}\right]^{us}$ 19Where,20 $d_{so} = Median diameter of the riprap materials, ft21V_a = Average velocity in the main channel, ft/s22d_{sug} = Average depth of flow in the main channel, ft23K_1 = Bank angle correction factor24\theta = Bank angle or rection factor25\phi = Riprap material's angle of repose, degree26(Based on output from FlowMaster and based on the Manual)30V_a = \frac{7.96}{0.29} ft/s33\theta = 221.8034\theta = 221.8035\theta = 221.8036\theta = -221.8037M_a = 0.8238\theta_{s0} = 1.25 ft39d_{s0} = 1.25 ft40d_{s0} (inch) = 16 inch $		Channel N	lame:	Cholla Ash	Onsite	Drop Struc	ture	SOUTHick	nannel				
$\begin{array}{c} \hline 7\\ 8\\ 9\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline $	h	-		e 100 -	yr								
BRelevant Equations101112 $d_{so} = \frac{0.001V_a^3}{d_{so}^4 K_1^{1/5}}$ 13 $f_{so} = \frac{0.001V_a^3}{d_{so}^4 K_1^{1/5}}$ 14 $f_{so} = \frac{1}{d_{so}^4 K_1^{1/5}}$ 15 $K_1 = \left[1 - \frac{\sin^2 \theta}{\sin^2 \phi}\right]^{1/5}$ 18 $Where,$ 19 $d_{so} = Median diameter of the riprap materials, ft19V_a = Average velocity in the main channel, ft/s21V_a = Average depth of flow in the main channel, ft22d_{sog} = Average depth of flow in the main channel, ft23Hence,24\theta = Bank angle correction factor25\theta = Riprap material's angle of repose, degree26Parameters27Input Parameters28(Based on output from FlowMaster and based on the Manual)31V_a = \frac{7.96}{1.6} ft/s32\theta = \frac{21.80}{21.80} degree [2.5:1 (H:V)]\theta = \frac{21.80}{21.40} degree From Figure 6.14 of the Manual for rounded riprap - attached.33Hence,34K_1 = 0.8235d_{s0} = 1.25 ft36d_{s0} = 1.25 ft37d_{s0} = 1.25 ft38d_{s0} = 1.25 ft39d_{s0} = 1.25 ft40d_{s0} = 1.6 inch41d_{s0} = 1.6 inch$		Location/	Station:	32+50 to 33	+00								
9Relevant Equations101112131415161718191920212223242526272819292021222324252627281929203132333434353636373849394140414141													
$\begin{array}{c} 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 18\\ 18\\ 18\\ 18\\ 18\\ 19\\ 18\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$		Polovanti	Equationa										
$\begin{aligned} \frac{11}{12} \\ \frac{11}{13} \\ \frac{11}{14} \\ \frac{11}{12} \\ \frac{11}{13} \\ \frac{11}{15} \\ $		Itelevant i	Lyuations										
$ \begin{array}{c} \frac{12}{13}\\ \frac{14}{15}\\ \frac{14}{15}\\ \frac{14}{15}\\ \frac{14}{15}\\ \frac{14}{15}\\ \frac{16}{17}\\ \frac{16}{10}\\ 1$													
$ \begin{array}{c} \frac{13}{14} \\ \frac{15}{16} \\ \frac{1}{16} \\ \frac$				0011/3									
$\frac{15}{16}$ $\frac{17}{18}$ Where, $\frac{1}{17}$ $\frac{1}{18}$ Where, $\frac{1}{12}$ $\frac{1}{17}$ $\frac{1}{18}$ Where, $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{$			$d_{50} = -$.0017									
$\frac{15}{16}$ $\frac{17}{18}$ Where, $\frac{1}{17}$ $\frac{1}{18}$ Where, $\frac{1}{12}$ $\frac{1}{17}$ $\frac{1}{18}$ Where, $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{$			d	$\begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} K_1^{1.5}$									
$ \frac{17}{18} $ Where, $ \begin{array}{c} \mathcal{K}_{1} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{2}\phi}\right] $ Where, $ \begin{array}{c} \mathcal{K}_{1} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{2}\phi}\right] $ $ \begin{array}{c} \mathcal{K}_{2} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{2}\phi}\right] $ $ \begin{array}{c} \mathcal{K}_{2} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{2}\phi}\right] $ $ \begin{array}{c} \mathcal{K}_{3} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{2}\phi}\right] $ $ \begin{array}{c} \mathcal{K}_{4} = \left[1 - \frac{\sin^{-2}\theta}{\sin^{-2}\phi}\right] $ $ \begin{array}{c} \mathcal{K}_{4} = \left[1 - \frac{\sin^{-2}\theta$													
$\frac{18}{19}$ Where, $\frac{11}{12} \left[\frac{1}{3} \sin^2 \phi \right]$ Where, $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}$			Г	$\sin^2 \theta$									
Where, $d_{50} = Median diameter of the riprap materials, ft V_a = Average velocity in the main channel, ft/sd_{avg} = Average depth of flow in the main channel, ft d_{avg} = Average depth of flow in the main channel, ft d_{avg} = Average depth of flow in the main channel, ft d_{avg} = Bank angle correction factord = Bank angle correction factor d = Bank angle with the horizontal, degree\phi = Riprap material's angle of repose, degreed = Riprap material's angle of repose, degreed = Riprap material's angle of the Manual)V_a = \frac{7.96}{0.29} ft/sd_{avg} = \frac{7.96}{0.29} ft/sd_{avg} = \frac{7.96}{0.29} ft degree [2.5:1 (H:V)]\phi = \frac{21.80}{41.0} degree [2.5:1 (H:V)]\phi = \frac{41.0}{41.0} degree From Figure 6.14 of the Manual for rounded riprap - attached.K_1 = 0.82d_{50} = 1.25 ftd_{50} (inch) = 16 inch $			$K_{+} = 1$	$-\frac{\sin^2 \theta}{\sin^2 \theta}$									
20 d_{50} =Median diameter of the riprap materials. ft21 V_a =Average velocity in the main channel, ft/s22 d_{avg} =Average depth of flow in the main channel, ft23 K_1 =Bank angle correction factor24 θ =Bank angle with the horizontal, degree25 ϕ =Riprap material's angle of repose, degree26Input Parameters27Input Parameters28Input Parameters29(Based on output from FlowMaster and based on the Manual)30 V_a = 7.96 ft/s31 V_a = 7.96 ft/s32 d_{avg} = 0.29 ft33 D_{50} = 16 inch34 θ = 21.80 degree35 ϕ = 1.25 ft36 K_1 = 0.82 39 d_{50} = 1.25 ft40 d_{50} (inch) =16 inch4142 41	_	Where	L	$\sin \varphi$									
21 V_a =Average velocity in the main channel, ft/s22 d_{avg} =Average depth of flow in the main channel, ft23K ₁ =Bank angle correction factor24 θ =Bank angle with the horizontal, degree26 ϕ =Riprap material's angle of repose, degree27Input Parameters29(Based on output from FlowMaster and based on the Manual)30 V_a = 7.96 31 V_a = 7.96 32 d_{avg} = 0.29 33 D_{50} = 16 34 θ = 21.80 ϕ = 21.80 $degree$ From Figure 6.14 of the Manual for rounded riprap - attached.36 K_1 = 0.82 39 d_{50} = 1.25 ft40 d_{50} (inch) =16 inch41 42		where,	d _{ee} =	Modion diam	otor of	****		della fi					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
23 $K_1 =$ Bank angle correction factor24 $\theta =$ Bank angle with the horizontal, degree25 $\phi =$ Riprap material's angle of repose, degree27Input Parameters28Input Parameters29(Based on output from FlowMaster and based on the Manual)31 $V_a =$ 32 $d_{avg} =$ 33 $D_{50} =$ 34 $\theta =$ 21.80degree35 $\phi =$ 41.0degree38 $K_1 =$ 0.82 39 $d_{50} =$ 40 d_{50} (inch) =4142													
$\begin{array}{cccc} 24\\ 25\\ 26\\ 27\\ 26\\ 27\\ 28\\ 1nput Parameters\\ 29\\ (Based on output from FlowMaster and based on the Manual)\\ \hline & V_a = & \hline 7.96\\ 32\\ 32\\ 32\\ 32\\ 33\\ 32\\ 34\\ 34\\ 6 = & \hline 21.80\\ 36\\ 36\\ 36\\ 37\\ 1 \\ 40 \\ 41\\ 42\\ \end{array}$			0				un ci	nannei, it					
$\begin{array}{cccc} \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & \text{Riprap material's angle of repose, degree} \\ \hline \phi &= & Riprap mate$							d						
26 27 Input Parameters 29 30 (Based on output from FlowMaster and based on the Manual) 31 32 33 33 34 4° = 7.96 16 16 16 16 34 35 36 $q =$ 41.0 41 42 0.29 1.80 41 41 41 42 41 41 41 41 41 41			-	Riprap mater	rial's an	ale of repos	re d	earee					
28 Input Parameters 29 (Based on output from FlowMaster and based on the Manual) 30 $V_a =$ 31 $V_a =$ 32 $d_{avg} =$ 32 $d_{avg} =$ 33 $D_{50} =$ 34 $\theta =$ 21.80 degree 25 $\phi =$ 41.0 degree 7.96 ft/s 34 $\theta =$ 21.80 degree 25.1 (H:V)] 35 $\phi =$ 41.0 degree 7.96 ft 36 $K_1 =$ 37 Hence, 38 $K_1 =$ $450 =$ 1.25 ft 40 d_{50} (inch) = 16 inch <d50 16="" =="" inches="" is="" stable.<="" td=""></d50>	26		r	11		gie en oper	, u	ogree					
Based on output from FlowMaster and based on the Manual) $V_{a} = 7.96 \text{ ft/s}$ $d_{avg} = 0.29 \text{ ft}$ $32 d_{avg} = 0.29 \text{ ft}$ $33 D_{50} = 16 \text{ inch} \text{ Assume a } D_{50} \text{ and then calculate if it is stable.}$ $\frac{34}{35} \phi = 21.80 \text{ degree} [2.5:1 (\text{H:V})]$ $\phi = 41.0 \text{ degree} \text{ From Figure 6.14 of the Manual for rounded riprap - attached.}$ $K_{1} = 0.82$ $\frac{39}{40} d_{50} = 1.25 \text{ ft}$ $d_{50} (\text{inch}) = 16 \text{ inch} $	27												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
31 32 $V_a =$ 7.96 ft/s ft/s 32 33 $d_{avg} =$ 0.29 0.29 ft 33 34 35 36 $\rho =$ 21.80 41.0 degree $q =$ 21.80 41.0 degree[2.5:1 (H:V)] 		(Based on	output from	FlowMaster	and bas	sed on the N	/anu	ial)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _e =	7 96 ft	/c								
33 34 34 35 36 $D_{50} =$ 16 16 inchAssume a D_{50} and then calculate if it is stable. $\theta =$ 21.80 21.80 degreedegree[2.5:1 (H:V)] From Figure 6.14 of the Manual for rounded riprap - attached.36 37 38 $K_1 =$ 0.82 $d_{50} =$ 1.25 ft 16 inchD50 = 16 inches is stable.													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Assuma		and than	loulote # 1	in n+-1 '			
$ \phi = 41.0 \text{ degree} From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ \phi = 41.0 \text{ degree} From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $ $ From Figure 6.14 of the Manual for rounded riprap - attached. } $								anu inen ca	iculate if it	is stabl	e.		
36 37 Hence, 37 Hence, 38 $K_1 =$ 0.82 39 $d_{50} =$ 1.25 ft 40 d_{50} (inch) = 16 inch 41 42					0		/ J	14 of the M	anual for r	hunded	rinra	n ottaal	.
38 $K_1 =$ 0.82 39 $d_{50} =$ 1.25 ft 40 d_{50} (inch) = 16 inch 41 42	36		Ψ		egree	romrigu	60.		anuariorio	Junded	npra	ip - attache	a.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	Hence,											
d_{50} (inch) = 16 inch <d50 16="" =="" inches="" is="" stable.<br="">d_{11} (inch) = 16 inch <d50 16="" =="" inches="" is="" stable.<="" td=""><td>38</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d50></d50>	38												
41 42	39												
42	40		d ₅₀ (inch) =	16 ir	nch	<d50 =<="" td=""><td>16</td><td>inches is st</td><td>able.</td><td></td><td></td><td></td><td></td></d50>	16	inches is st	able.				
	_												
$(1 \leq 1)$ Deretors proposed deging given $d = (1 \geq 1)$		T 1. (
Therefore, proposed design riprap size $(d_{50}) = 16$ inch	43	Iherefo	re, propose	ed design rip	rap siz	e (d ₅₀) =	16	inch					

Page _____ Date:

Ву:____ Checked:

	A	В	С	D	E	F	G	Н	<u> </u>	J	К
1	Calculat	ion of Ri	prap Size	for Ch				1	l!		
2	Calculatio	ons are bas	ed on Drair	nage Des	sign Manu	al for M	aricopa	County (M	anual)		
3					•		•	· · · · · · · · · · · · · · · · · · ·			
4	Channel N		Cholla Ast	ONSITI	E SOUTH	Channe	1				
5		ood Freque		•				÷.			
6	Location/	Station:	35+00 to 3	8+50							
8											
9	Relevant I	Equations									
10											
11											
12		0	$001V^{3}$								
13		$d_{50} = \frac{0}{d}$	10.5 × 1.5								
14 15			avg K								
16			70	5							
17		K - 1	$-\frac{\sin^2\theta}{\cos^2\theta}$								
18			$\sin^2 \phi$								
19	Where,		<u> </u>								
20		d ₅₀ =	Median dia	meter of	the riprap	material	s, ft				
21		V _a =	Average ve	locity in	the main c	hannel,	ft/s				
22		d _{avg} =	Average de	epth of flo	w in the n	nain chai	nnel, ft				
23		K ₁ =	Bank angle								
24		θ =	Bank angle	with the	horizonta	, degree	1				
25	а т	$\phi =$	Riprap mat	erial's ar	gle of rep	ose, deg	ree				
26 27											
	Input Para	motore									
			FlowMaste	r and had	ed on the	Manual	\				
30	·					Manual)				
31		∨ _a =	3.53	ft/s							
32		d _{avg} =	0.61	ft							
33		D ₅₀ =	1	inch	Assume	a D ₅₀ an	d then ca	alculate if it	is stable.		
34		θ =		degree	[2.5:1 (H						
35		ϕ =	41.0	degree	From Fig	ure 6.14	of the N	lanual for ro	ounded ripra	ap - attached	l.
36	1.1										
	Hence,	K -								~	
38		K ₁ =	0.82	~							
39		d ₅₀ =	0.08								
40		d ₅₀ (inch) =	1	inch	<d50< th=""><th>= 1 inc</th><th>hes is st</th><th>table.</th><th></th><th></th><th></th></d50<>	= 1 inc	hes is st	table.			
41											
42	Therefo	re propos	ed design ri	nran ei-	o (d.) =		. 1.				
L	merelu	re, propose	eu design ri	prap siz	e (a ₅₀) =	1 inc	:n				

By:_____ Checked:_____

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash Onsite Drop Structure channel section 1
5	Design Flood Freque 100 -yr
6	_ocation/Station: 32+50 to 33+00
7	
8	
9	Relevant Equations
10	
11	
13	$d = \frac{0.001 V_a^3}{2}$
14	$d_{50} = \frac{0.001 V_a^3}{d_{avy}^{0.5} K_{1.5}^{1.5}}$
15	
16	$\int_{V} \int_{V} \sin^2 \theta \int_{V}^{0.5}$
17	$ \Lambda_1 = 1 - \frac{1}{2}$
18	$\int \int \sin^2 \phi$
	Where,
20	d_{50} = Median diameter of the riprap materials, ft
21	V_a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	K ₁ = Bank angle correction factor
24	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
26 27	
	nput Parameters
	Based on output from FlowMaster and based on the Manual)
30	
31	$V_a = 12.79 \text{ ft/s}$
32	$d_{avg} = 0.64$ ft
33	$D_{50} = 42$ inch Assume a D_{50} and then calculate if it is stable.
34	$\theta = 21.80$ degree [2.5:1 (H:V)]
35	ϕ = 41.0 degree From Figure 6.14 of the Manual for rounded riprap - attached.
36	
	tence,
38	K ₁ = 0.82
39	$d_{50} = 3.49 \text{ ft}$
40	d_{50} (inch) = 42 inch <d50 42="" =="" inches="" is="" stable.<="" td=""></d50>
41	
42	
43	Therefore, proposed design riprap size $(d_{50}) = 42$ inch

Page _____ Date:____

By:_____ Checked:_____

	A	В	С	D	E	F	G	Н		J	
1	Calculat	ion of Ri	prap Size	for Ch						J	K
2	Calculatio	ns are bas	ed on Drair	age De	sign Man	ual for	Maricon	a County	(Manual)		
3				J- J	- gir man	441 101	mancop	a county	(Manual)		
4	Channel N	lame:	Cholla Asł		E Channe	l sacti	ion 1				
5	Design Flo	od Freque	e 100		- onumic	1 3000					
6	Location/S	Station:	35+00 to 3	-							
7											
8 9	Dolovert F	•									
	Relevant E	quations									
10 11											
12			201113								
13		$d_{50} = \frac{0}{d}$	$\frac{.001V_a}{a}$								
14		d	$\frac{1}{a_{yg}} \frac{a}{K_{1}^{1.5}}$								
15											
16		ſ	$\sin^2 \theta$	7							
17		$K_1 = 1$									
18		L	$\sin^2 \phi$								
	Where,	d -	NA. 12 12	-							
20		d ₅₀ =	Median diar								
21		∨ _a =	Average ve								
22		d _{avg} =	Average de			nain ch	nannel, ft				
23		K ₁ =	Bank angle								[
24 25		$\theta =$	Bank angle	with the	horizonta	l, degr	ee				
25		φ =	Riprap mate	erial's an	gle of rep	ose, de	egree				
27											
	Input Para	meters									
29	(Based on a	output from	FlowMaster	and bas	sed on the	Manu	al)				
30							,				
31		V _a =	4.43 1	ft/s							
32		d _{avg} =	1.55 f	ft							
33		D ₅₀ =	2 i	nch	Assume	a D ₅₀ a	and then a	calculate if	it is stable.		
34		θ =	21.80		[2.5:1 (H						
35		$\phi = [$	41.0	degree	From Fig	ure 6.1	14 of the I	Manual for	rounded rip	rap - attached	d.
36 37	Honoc								-1-	,	
	Hence,	K	0.00								
38		K1 =	0.82								
39		d ₅₀ =	0.09 f	-							
40		d ₅₀ (inch) =	2 ii	nch	<d50< td=""><td>= 2 i</td><td>nches is s</td><td>stable.</td><td></td><td></td><td></td></d50<>	= 2 i	nches is s	stable.			
41											
43	Therefor	a proposo	d design rip		. (al.)			7			
	mereror	e, propose	u uesign fip	siap size	$= (a_{50}) =$	2 ii	nch	<u> </u>			

Page _____. Date:

By:_____ Checked:

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash ONSITE Channel section 2
5	Design Flood Freque 100 -yr
	Location/Station: 35+00 to 38+50
7	
8	Relevant Equations
10	Relevant Equations
11	
12	0.0011/3
13	$d_{50} = \frac{0.001 V_a^3}{d_{avg}^{0.5} K_1^{1.5}}$
14	$\int d_{avg}^{a,s} K_1^{a,s} + \int d_{avg}^{a,s} K_1^{a,s} + $
15	
16 17	$\left[\int_{\mathcal{U}} \sin^2 \theta \right]^{0.5}$
18	$K_1 = \left 1 - \frac{\sin^2 \phi}{\sin^2 \phi} \right $
	Where,
20	d_{50} = Median diameter of the riprap materials, ft
21	V_a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	$K_1 =$ Bank angle correction factor
24	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
26	
27	Input Parameters
	(Based on output from FlowMaster and based on the Manual)
30	
31	$V_a = 4.69$ ft/s
32	$d_{avg} = 1.48$ ft
33	$D_{50} = 2$ inch Assume a D_{50} and then calculate if it is stable.
34	θ = 21.80 degree [2.5:1 (H:V)]
35	$\phi = 41.0$ degree From Figure 6.14 of the Manual for rounded riprap - attached.
36	
	Hence, K1 = 0.82
38	
39	
40	d_{50} (inch) = 2 inch <d50 2="" =="" inches="" is="" stable.<="" th=""></d50>
41	
43	Therefore, proposed design riprap size $(d_{50}) = 2$ inch
<u> </u>	2 Inch

Page _____ Date:

By:_____ Checked:_____

	A B C D E	F G	Н		J	К
1	Calculation of Riprap Size for Channel Li		1			
2		ial for Maricona	County/M-	leural)		
3		arior maricopa	County (Ma	anuarj		
4		l contina 2				
5		i section 5				
6						
7						
8						
9	Relevant Equations					
10						
11						
12	$(0.001 V_a^3)$					
13						
14	+ avg - 1					
16						
17						
18						
19	Where,					
20	d ₅₀ = Median diameter of the riprap	materials, ft				
21						
22						
23						
24	$\theta = Bank angle with the horizontal$	l. dearee				
25	$\phi = Riprap material's angle of rep$					
26	5	Ū				
27						
	Input Parameters					
29 30		Manual)				
31						
32						
		• D. • • ! !!				
33		a D ₅₀ and then c	alculate if it i	s stable.		
35			Ionual for			a
36		ure 6.14 of the M	anual for ro	unded ripra	attached	J.
38	K ₁ = 0.82					
39	$d_{50} = 0.05 \text{ ft}$					
40		= 1 inches is s	table			
41		1 110103 13 5				
42						
43	Therefore, proposed design riprap size (d ₅₀) =	1 inch				
·			L			

¢

By:	
Checked:	

	А	В	С	D	E	F	G	H	1	J	K
1	Calculati	on of Rip	orap Size	for Cha	nnel Lin	ina		h		-	
2			ed on Drair				Maricopa	County (Ma	anual)		
3				Ū	•			,	,		
4	Channel N	ame:	Cholla Asł		Channel	secti	ion 4				
5	Design Flo	od Freque									
6	Location/S	station:	35+00 to 3	8+50							
7											
8	D - 1										
	Relevant E	quations									
10											
11 12											
13		$d_{m} = \frac{0}{2}$	$.001V_{a}^{+}$								
14		$d_{50} = \frac{0}{d}$	$\begin{bmatrix} 0.5 \\ avg \end{bmatrix} K_1^{1.5}$								
15		L									
16		Г	$\sin^2 \Theta^{-1}$	5							
17		$K_{1} = 1$	$-\frac{\sin^2\theta}{1-2}$								
18	10/1-	L	$\sin^{+}\phi$								
	Where,	d –	N 4 1'								
20		d ₅₀ =	Median dia								
21		V _a =	Average ve								
22		d _{avg} =	Average de			ain cl	nannel, ft				
23		K ₁ =	Bank angle								
24		θ =	Bank angle								
25 26		φ =	Riprap mat	erial's an	gle of repo	se, d	egree				
27											
28	Input Para	meters									
			I FlowMaste	r and bas	ed on the l	Manu	ual)				
30							-				
31		V _a =	4.63	ft/s							
32		d _{avg} =	1.49	ft							
33		D ₅₀ =	2	inch	Assume a	D_{50}	and then ca	alculate if it	is stable.		
34		θ =		degree	[2.5:1 (H:\						
35		ϕ =	41.0	degree	From Figu	ire 6.	14 of the M	lanual for ro	ounded ripr	ap - attache	d.
36	Hence,										
		K1 =	0.82								
38		$d_{50} =$		£1.							
39			0.11		0.55	-					
40		d ₅₀ (inch) =	2	inch	<d50 =<="" td=""><td>: 2</td><td>inches is s</td><td>table.</td><td></td><td></td><td></td></d50>	: 2	inches is s	table.			
41											
43	Therefor	e propos	ed design r	inran ei a	a(d) =		inch	1			
		s, proposi	sa design f	ipi ap sizi	= (u ₅₀) -	12	inch	L			

Page ____ Date:

By:_____ Checked:_____

	A	В	С	D	E	F	G	Н	1	J	K
1	Calculati	on of Rip	orap Size	for Cha	nnel Lin	ina				I	
2			ed on Drain				Maricopa	County (Ma	anual)		
3				-	-		·				
4	Channel Na	ame:	Cholla Ash		Channel s	sect	ion 5				
5	Design Flo	od Freque	100	-yr							
6	Location/S	tation:	35+00 to 3	8+50							
7											
89	Relevant E	quations								•	
10		quations									
11											
12			001123								
13		$d_{50} = \frac{0}{d}$.001V //								
14		d d	$\frac{d}{d} \frac{K_1}{K_1}$								
15				~							
16		[$\sin^2 \theta$	5							
17 18		$ K_1 = 1 $	$-\frac{\sin^2\theta}{\sin^2\phi}\Big]^{0.5}$								
19	Where,	L	SIL Y								
20		d ₅₀ =	Median dia	meter of	the riprap n	nate	rials, ft				
21		V _a =	Average ve								
22		d _{avg} =	Average de								
23		K1 =	Bank angle	correctio	on factor						
24		θ =	Bank angle	with the	horizontal,	degi	ree				
25		φ =	Riprap mat	erial's an	gle of repos	se, d	legree				
26											
27 28	Input Para	matara									
20			FlowMaste	r and has	ed on the N	Mani	(ادر				
30		pat non	iommusic			viaill	aan				
31		V _a =	3.53	ft/s							
32		d _{avg} =	0.92	ft							
33		D ₅₀ =	1	inch	Assume a	D ₅₀	and then ca	alculate if it	is stable.		
34		θ =	21.80	degree	[2.5:1 (H:\						
35		$\phi =$	41.0	degree	From Figu	re 6	.14 of the N	lanual for ro	ounded ripra	ap - attache	d.
36	Llana										
	Hence,	K -	0.00								
38		K1 =	0.82	<i>t</i> .							
39		d ₅₀ =	0.06								
40		d ₅₀ (inch) =	1	inch	<d50 =<="" th=""><th>: 1</th><th>inches is sl</th><th>table.</th><th></th><th></th><th></th></d50>	: 1	inches is sl	table.			
41 42											
42	Therefor	e propos	ed design ri	inran eiz	o (d.) -	4	inch	I			
43	inereloi	e, proposi	eu uesign ri	iprap siz	$e_{(a_{50})} =$	11	inch	L			

Page _____. Date:

By:_____ Checked:_____

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash ONSITE Channel section 6
5	Design Flood Freque 100 -yr
6	Location/Station: 35+00 to 38+50
7	
8	
	Relevant Equations
10	
12	
13	$d_{in} = \frac{0.001 V_a}{1000}$
14	$d_{50} = \frac{0.001 V_a^3}{d_{acs}^{0.5} K_1^{1.5}}$
15	
16	$\begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}^{0.5}$
17	$ \Lambda_1 = I - \dots \rangle$
18	$\sin^2 \phi$
20	Where. $d_{50} = Median diameter of the riprap materials. ft$
21	d_{50} = Median diameter of the riprap materials, ft V_a = Average velocity in the main channel, ft/s
22	$d_{avg} = Average depth of flow in the main channel, ft$
23	$K_1 =$ Bank angle correction factor
24	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
26	
27	
	Input Parameters
30	Based on output from FlowMaster and based on the Manual)
31	$V_a = 3.53$ ft/s
32	$d_{avg} = 0.92$ ft
33	$D_{50} = 1$ inch Assume a D_{50} and then calculate if it is stable.
34	$\theta = 21.80$ degree [2.5:1 (H:V)]
35	ϕ = 41.0 degree From Figure 6.14 of the Manual for rounded riprap - attached.
36	
	Hence,
38	$K_1 = 0.82$
39	$d_{50} = 0.06 \text{ ft}$
40	d_{50} (inch) = 1 inch <d50 1="" =="" inches="" is="" stable.<="" th=""></d50>
41	
42	
43	Therefore, proposed design riprap size (d ₅₀) = 1 inch

By:_____ Checked:_____

Cholla Ash Monofill Riprap Calculation

	A B	СТ	D	E	F	G	Н		J	К
1	Calculation of	Riprap Size fo			ing	<u> </u>			J	Γ.
2	Calculations are	based on Draina	ae Des	ian Manua	al for	Maricona	County /M	(احبيم		
3	1		5	-gri mana		maneopa	oounty (ma	inual)		
4	Channel Name:	Cholla Ash (Dron Str	ictur	s saction .	7			
5	Design Flood Fre	eque 100 - y		. Drop our	acture	section				
6	Location/Station									
7]									
8										
9	Relevant Equation	ns								
10										
11	ا									
12 13		$-\frac{0.001V_a^3}{2}$								
14	^{cr} 50	$=\frac{0.001V_a^3}{d_{avg}^{0.5}K_1^{1.5}}$								
15	<u>ا</u> ا									
16		$\left[\sin^2 \theta \right]^{0.5}$								
17	K_1 :	$= \left 1 - \frac{\sin \theta}{\cos \theta} \right $								
18		$\begin{bmatrix} \sin^-\phi \end{bmatrix}$								
	Where,									
20	d ₅₀ = V _a =	Median diam								
21		Average velo								
22	d _{avg} =	Average dept			ain ch	annel, ft				
23 24	K ₁ = θ =	Bank angle o								
25	φ =	Bank angle w	in the	horizontal,	degre	e				
26	φ-	Riprap materi	ais an	gie or repo	se, ae	gree				
27										
	Input Parameters									
29	(Based on output I	rom FlowMaster a	ind bas	ed on the I	Manua	al)				
30										
31	∨ _a =	9.44 ft/	S							
32	d _{avg} =	0.39 ft			_					
33	D ₅₀ =	22 in				nd then ca	lculate if it i	s stable.		
34 35	$\theta = \phi = 0$	21.80 de		[2.5:1 (H:\						
36	φ =	41.0 de	gree	From Figu	re 6.1	4 of the M	anual for ro	unded ripra	p - attached	i.
	Hence,									
38	K ₁ =	0.82								
39	d ₅₀ =	1.80 ft								
40	d ₅₀ (inc	h)= 22 ind	ch	<d50 =<="" td=""><td>22 ir</td><td>nches is sta</td><td>able.</td><td></td><td></td><td></td></d50>	22 ir	nches is sta	able.			
41										
42	T 1 (
43	Therefore, prop	oosed design ripr	ap size	e (d ₅₀) =	22 ir	nch				

By:_____ Checked:_____

	A	В	С	D	E	F	G	Н		J	к
1	Calculat	ion of Rin	orap Size	for Cha			<u> </u>		<u> </u>		
2			ed on Drain				Maricona	County (N	(anual)		
3				age 200	.gir mana		mancopa	oounty (n	anuarj		
4	Channel N	ame	Cholla Ash		Channel	Foot	ion 7				
	Design Flo				. Channel	3001					
6	Location/S		35+00 to 3								
7											
8											
	Relevant E	quations									
10											
11			····· ,]								
13		$d_{1} = \frac{0}{2}$.001V								
14		$d_{50} = \frac{0}{d}$	$\begin{bmatrix} 0.5 \\ avg \end{bmatrix} K_1^{1.5}$								
15											
16		Г		7							
17		$K_{1} = 1$	$-\frac{\sin^2\theta}{\cos^2\theta}$								
18			$\sin^2 \phi$								
	Where,	d –	NA								
20		d ₅₀ =	Median dia								
21		∨ _a =	Average ve								
22		d _{avg} =	Average de			ain c	hannel, ft				
23		K ₁ =	Bank angle								
25		$\Theta = \phi =$	Bank angle								
26		ψ -	Riprap mate	enais an	gie of repo	ise, u	legree				
27											
	Input Para										
	(Based on	output from	FlowMaster	r and bas	sed on the	Manu	ual)				
30			ı								
31		∨ _a =	3.53								
32		d _{avg} =	0.92								
33		D ₅₀ =		inch			and then c	alculate if i	t is stable.		
34		$\theta =$		degree	[2.5:1 (H:						
35		$\phi =$	41.0	degree	⊢rom Fig	ure 6	.14 of the I	Aanual for	rounded ripr	ap - attache	d.
	Hence,										
38		K1 =	0.82								
39		d ₅₀ =	0.06	ft							
40		d ₅₀ (inch) =		inch	<d50< td=""><td>= 1</td><td>inches is s</td><td>table</td><td></td><td></td><td></td></d50<>	= 1	inches is s	table			
41		50 (000						
42											
43	Therefo	re, propose	ed design ri	prap siz	e (d ₅₀) =	1	inch]			
										· · · · · · · · · · · · · · · · · · ·	

Page _____. Date:_____

.

<u> </u>	A	В	С	D	E	IFT	G	н	I	J	K
1	1		orap Size	-				I	L '	I	
2							Maricopa	County (Ma	anual)		
3	Calculations are based on Drainage Design Manual for Maricopa County (Manual)										
4	Channel Name: Cholla Ash ONSITE Channel section 8										
5	Design Flo	ood Freque									
6	Location/Station: 35+00 to 38+50										
7	-										
8	Delevent										
	Relevant E	quations									
10	-										
12	•		0011/3								
13	1	$d_{50} = \frac{0}{d}$.001V //								
14		ct ct	$\begin{bmatrix} m_{avg} \\ avg \end{bmatrix} K_{1}^{max}$								
15											
16	•	Ι., Γ.	$-\frac{\sin^2\theta}{\sin^2\phi}\bigg]^0$.5							
18	-	$K_1 = 1$	$-\frac{1}{\sin^2 \phi}$								
	Where,	L									
20	1	d ₅₀ =	Median dia	meter of	the riprap	materi	als, ft				
21		$\vee_a =$	Average ve	elocity in	the main c	hannel	, ft/s				
22		d _{avg} =	Average d	epth of flo	w in the n	nain ch	annel, ft				
23		K1 =	Bank angle	e correctio	on factor						
24]	θ =	Bank angle	e with the	horizonta	l, degre	ee				
25		ϕ =	Riprap ma	terial's an	gle of rep	ose, de	egree				
26 27											
28	Input Para	meters									
29	(Based on	output from	n FlowMaste	er and bas	sed on the	Manu	al)				
30				•							
31		V _a =	2.79	ft/s							
32		d _{avg} =	1.12	ft							
33		D ₅₀ =		linch	Assume	a D ₅₀ a	and then c	alculate if it	is stable.		
34	4	θ =		degree	[2.5:1 (H						
35	-	$\phi =$	41.0	degree	From Fig	jure 6.1	14 of the N	Manual for ro	ounded ripr	ap - attache	d.
36	Hence,										
38		K ₁ =	0.82								
39	1	d ₅₀ =	0.02								
40	1	d ₅₀ (inch) =		inch	<d50< th=""><th>= 1;</th><th>nches is s</th><th>tahle</th><th></th><th></th><th></th></d50<>	= 1;	nches is s	tahle			
40	1	~50 (mon) -	'	11011	000	- 11	101103 15 5				
42											
43	Therefo	re, propos	ed design ı	riprap siz	:e (d ₅₀) =	1 i	nch	1			

Page _____ Date:

Ву:	
Checked:	

	A	В	С	D	E	F	G	Н	I	J	К
1	Calculat	ion of Rip	orap Size	for Cha	nnel Li	nina		.			L
2							Maricopa	County (Ma	anual)		
3				-	-		•		,		
4	Channel Name: Cholla Ash ONSITE Channel section 9										
5		ood Freque	e 100	-yr							
6	Location/S	Station:	35+00 to 3	8+50							
7											
9	Relevant I	Equations									
10		quationo									
11											
12		0	$001V^{3}$								
13		$d_{50} = \frac{0}{d}$	105 K 15								
14		(1	$a_{xg}\Lambda_{+}$								
15 16				-							
17		$\nu = 1$	$\sin^2 \theta$.)							
18		$ \Lambda_1 = 1 $	$-\frac{\sin^2\theta}{\sin^2\phi}\bigg]^0$								
	Where,	L									
20		d ₅₀ =	Median dia	meter of	the riprap	mater	ials, ft				
21		V _a =	Average ve	elocity in t	he main c	hanne	el, ft/s				
22		d _{avg} =	Average de	epth of flo	w in the n	nain c	nannel, ft				
23		K ₁ =	Bank angle	e correctio	on factor						
24		θ =	Bank angle	e with the	horizonta	l, degi	ee				
25		$\phi =$	Riprap mat	terial's an	gle of rep	ose, d	egree				
26 27	{										
28	Input Para	ameters									
29			n FlowMaste	er and bas	sed on the	Manu	al)				
30							,				
31		V _a =	2.79	ft/s							
32		d _{avg} =	1.12	ft							
33		D ₅₀ =		linch	Assume	a D ₅₀	and then c	alculate if it	is stable.		
34		θ =		degree	[2.5:1 (H						
35		$\phi =$	41.0	degree	From Fig	jure 6	14 of the N	Manual for ro	ounded ripr	ap - attache	ed.
37	Hence,										
38	rionee,	K ₁ =	0.82								
39		d ₅₀ =	0.03	ft							
40		d ₅₀ (inch) =		inch	<d50< th=""><th>= 1</th><th>inches is s</th><th>table</th><th></th><th></th><th></th></d50<>	= 1	inches is s	table			
41		50 ()	I		200	. 1					
42						_					
43	Therefo	re, propos	ed design r	iprap siz	e (d ₅₀) =	1	inch]			

Page _____ Date:

By:_____ Checked:_____

	A	В	С	D			<u>.</u>	
1	Calculation of Rip	prap Size for Char	nel Lining	LU	E	F	G	H
2	Calculations are base	ed on Drainage Desig	n Manual for Maricon	a County (Manua	IN			
3		J	in manadi tor maricop	a county (manua	1)			
4	Channel Name:		Cholla Ash Offsite Cl	honnol o stiru d				
	Design Flood Freque	ncv:	100					
6	Location/Station:	,	1+50 to 7+50	-yr				
7								
8								
	Relevant Equations							
10								
11								
12		0.001	V^{3}					
13		$d_{50} = \frac{0.001}{d_{avg}^{0.5} K}$	<u>a</u> r 1.5					
14 15 16			<u>`1</u>					
15		·····						
17		, sin	$n^2 \theta$					
18			$\overline{n^2 \phi}$					
19	Where,		·					
20		d ₅₀ =	Median diameter of the	e ripran materials	ft			
21			Average velocity in the					
22	1		Average depth of flow					
23 24 25			Bank angle correction					
24			Bank angle with the ho					
25		$\phi =$	Riprap material's angle	e of repose, deared	9			
26			-					
27	Input Parameters							
20	(Based on output from	Elow Montor and have						
30		nowinaster and based	on the Manual)					
31	Ň	√ _a = [7.96	ft/s				
32	(ft				
33				inch	Assume a D and th		- F - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
34				degree	Assume a D ₅₀ and the	en calculate	if it is stable.	
35				degree	[2.5:1 (H:V)]	ha Manual f	an and the first	
36		· L	······································	009100	From Figure 6.14 of t		or rounded riprap -	attached.
	Hence,							
38	ł	ζ ₁ =	=(1-((SIN(RADIANS(C	34)))^2/(SIN(RAD)	ANS(C35)))^2))^0 5			
39	c	1 ₅₀ =	=0.001*C31^3/(C32^0.	5*C38^1 5)	ft			
40	c		=CEILING(C39*12,1) i		<d50 =<="" td=""><td>-000</td><td></td><td></td></d50>	-000		
41						=C33 inch	ies is stable.	
42								
43	Therefore, proposed	d design riprap size (d ₅₀) =			=C33 inch		
_						1-033 men	1	

Onsite SOUTH Channel-DROP Date: 02/12/2009 Time: 17:05 ******* * RIPRAP DESIGN SYSTEM (RDS) * * * RΥ * * WEST Consultants, Inc. * * * * Version 3.0 March, 2005 * * * * $\frac{1}{2}$ * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * WEB:WWW.WESTCONSULTANTS.COM * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite SOUTH Channel DROP

USACE Method

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 7.96 ft/s N/A N/A 165. lbs/cu ft 1.00 0.29 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.60 ftComputed Local Depth Averaged Velocity7.96 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		1.250	ft
Selected Minimum		0.61	ft
Selected Minimum	D90	0.88	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	67.	169.
W50	34.	50.
	Page 1	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	165. Ch	7.96 ft/s 2.50 lbs/cu ft annel Bank
Output Results:		
Computed D50		0.45 ft
*** Using Gradations from CO	E ETL 1110-2-120 ***	
Specific Weight165.0 lbs/Layer Thickness0.7Selected Minimum D300.1Selected Minimum D900.1	cu ft 50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone Weigh Minimum	t, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR 1	Method	
Input Parameters:		
Average Channel Velocity		7.96 ft/s
Output Results:		
Computed D50		0.88 ft
*** Using Gradations from CO	E ETL 1110-2-120 ***	
Selected Minimum D30 0.7	cu ft 20 ft 73 ft 26 ft	
Poncont Lighton by Weight	Stone Weigh	
Percent Lighter by Weight w100	Minimum 117.	Maximum
w100 w50 w15	58. 18.	292. 86. 43.

Onsite SOUTH Channel-DROP USGS Method __ Input Parameters: 7.96 ft/s Average Channel Velocity Output Results: _____ 1.58 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 2.750 ft 1.34 ft Layer Thickness Selected Minimum D30 1.94 ft Selected Minimum D90 Stone Weight, 1bs Maximum Percent Lighter by Weight Minimum 1797. w100 719. 532. W50 359. 266. 112. W15 _____ Isbash Method _____ Input Parameters: _____ Average Channel Velocity Unit Weight of Stone 7.96 ft/s 165. lbs/cu ft High Turbulence Level Output Results: ______ 0.81 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 1.500 ft 0.73 ft Layer Thickness Selected Minimum D30 1.06 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 292. 117. w100 W50 58. 86. 43. W15 18. ____ Cal B & SP Method _____

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type

-_____

7.96 ft/s 10.61 ft/s 165. lbs/cu ft 2.50 Impinging

Output Results:

Computed W

40.71 lbs

** CalTrans A Gradation **

(1) Outside Layer:

Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	$1.00 \\ 0.50 \\ 0.25$
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft

____ HEC-11 Method _____

Input Parameters:

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose

Riprap Placement Safety Factor	Onsite SOUTH Cha	nnel-DROP Channel Bank 1.1
Output Results:		
Computed D50		0.34 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

٠

Project: Cholla Ash Onsite Description: Onsite SOUTH Channel DROP_BTM

_ USACE Method __ Input Parameters: _____ Velocity Type Average Channel Shape Trapezoidal Channel Type Straight Bend Angle (deg) N/A Average Channel Velocity 7.96 ft/s Bottom width N/A Bend Radius N/A Top Width N/A Unit Weight of Stone 165. lbs/cu ft Riprap Layer Thickness 1.00 Local Flow Depth 0.29 ft Cotangent of Side Slope N/A Safety Factor 1.1 Riprap Placement Channel Bottom Rock Type Angular Output Results: _____

Computed D300.60 ftComputed Local Depth Averaged Velocity7.96 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		1.250	ft
Selected Minimum	D30	0.61	ft
Selected Minimum	D90	0.88	ft

Percent Lighter by Weight	Minimum	
w100 w50	67. 34.	169. 50.
W15	11.	25.
ASCE	Method	
Input Parameters:		,
Local Velocity		7.96 ft/s
Cotangent of Side slope Unit Weight of Stone	16	N/A 55. lbs/cu ft
Riprap Placement		annel Bottom
Output Results:		
Computed D50		0.42 ft
*** Using Gradations from CC	DE ETL 1110-2-120 *	* *
Layer Thickness 0.7 Selected Minimum D30 0.	'50 ft 37 ft	
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	'50 ft 37 ft	
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	'50 ft 37 ft	
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight	250 ft 37 ft 53 ft Stone Wei Minimum 15.	Maximum 36.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight	250 ft 37 ft 53 ft Stone Wei Minimum	Maximum
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15	250 ft 37 ft 53 ft Minimum 15. 7.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15	250 ft 37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters:	250 ft 37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters: Average Channel Velocity	250 ft 37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11. 5.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters: Average Channel Velocity Dutput Results:	250 ft 37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11. 5.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters: Average Channel Velocity Output Results:	250 ft 37 ft 53 ft Minimum 15. 7. 2. Method	Maximum 36. 11. 5. 7.96 ft/s 0.88 ft

Selected Minimum D300.73 ftSelected Minimum D901.06 ft

Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
W100 W50 W15	117. 58. 18.	292. 86. 43.
USGS	Method	
Input Parameters:		
Average Channel Velocity	•	7.96 ft/s
Output Results:		
Computed D50		1.58 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
Specific Weight165.0lbs/Layer Thickness2.7Selected Minimum D301.Selected Minimum D901.	50 ft 34 ft 94 ft	aight lbg
Percent Lighter by Weight	Minimum	eight, lbs Maximum
W100 W50 W15	719. 359. 112.	1797. 532. 266.
Isbash	Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	1	7.96 ft/s 165. lbs/cu ft High
Output Results:		
Computed D50		0.81 ft
*** Using Gradations from CO	E ETL 1110-2-120	* * *

Specific W	leight	165.0	lbs/cu	ft
Layer Thic	kness		1.500	ft
Selected M	linimum	D30	0.73	ft
Selected M	linimum	D90	1.06	ft

Percent Lighter by Weight	Stone Weigł Minimum	
W100 W50 W15	117. 58. 18.	292. 86. 43.
Cal B & SP	Method	
Input Parameters:		
Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	165.	7.96 ft/s 10.61 ft/s 1bs/cu ft 2.50 Impinging
Output Results:		
Computed W		40.71 lbs

** CalTrans A Gradation **

(1) Outside Layer:

Gradation Class	1/2 Ton
Layer Thickness	3.40 ft

Percent Larger than Rock Size (Ton)

0 - 5	1.00
50 - 100	0.50
95 - 100	0.25

(2) Inner Layer:

Gradation Class	None
Layer Thickness	0.00 ft
bayer mickness	0.00

(3) Backing:

Backing Class No.

1

.

Layer Thickness 1.8 ft (4) Fabric: Fabric Type В Total Thickness (1) + (2) + (3) + (4): 5.2 ft ____HEC-11 Method _____ Input Parameters: _____ Average Channel Velocity 7.96 ft/s 3.00 ft Average Flow Depth Unit Weight of Stone 165. lbs/cu ft Cotangent of Side Slope N/A Material Angle of Repose deg. Riprap Placement Channel Bottom Safety Factor 1.1 Output Results: _____ Computed D50 0.26 ft ** FHWA Gradation** Facing Gradation Class Layer Thickness 1.90 Ēt Percent Smaller by Size Rock Size, ft Rock Weight, lbs

D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

Onsite SOUTH Channel Date: 02/12/2009 Time: 17:03 ****** * 20 RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * $\dot{\mathbf{x}}$ * * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. ÷ * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * *******

Project: Cholla Ash Onsite Description: Onsite SOUTH Channel

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 3.53 ft/s N/A N/A 165. lbs/cu ft 1.00 0.61 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.07 ftComputed Local Depth Averaged Velocity3.53 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
W50	7.	11.
	Page 1	

w15	2.	5.
<i>A</i>	ASCE Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	165.]	3.53 ft/s 2.50 bs/cu ft nel Bank
Output Results:		
Computed D50		0.09 ft
*** Using Gradations fro	om COE ETL 1110-2-120 ***	
Specific Weight 165.0 Layer Thickness Selected Minimum D30 Selected Minimum D90	lbs/cu ft 0.750 ft 0.37 ft 0.53 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
L	ISBR Method	
Input Parameters:		
Average Channel Velocity	3	.53 ft/s
Output Results:		
Computed D50		0.16 ft
*** Using Gradations fro	m COE ETL 1110-2-120 ***	
Specific Weight 165.0 Layer Thickness Selected Minimum D30 Selected Minimum D90	lbs/cu ft 0.750 ft 0.37 ft 0.53 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum

Percent Lighter by weight	MITTINUM	Maximum
w100	15.	36.
W50	7.	11.
w15	2.	5.

	Onsite SOUTH Chann Method	
Input Parameters:		
Average Channel Velocity		3.53 ft/s
Output Results:		
Computed D50		0.22 ft
*** Using Gradations from C	DE ETL 1110-2-120	* * *
Specific Weight 165.0 lbs, Layer Thickness 0.1 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbasł	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	10	3.53 ft/s 65. lbs/cu ft High
Output Results:		
Computed D50		0.16 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
Specific Weight 165.0 lbs, Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone We [.] Minimum	ight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
Cale &	SP Method	

	channer
Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	3.53 ft/s 4.71 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	0.31 lbs
** CalTrans A Gradation	* *
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	$1.00 \\ 0.50 \\ 0.25$
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Page 4	3.53 ft/s 3.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
Gradation Class Layer Thickness	Facing 1.90 ft	
**	FHWA Gradation**	
Computed D50		0.03 ft
Output Results:		
Riprap Placement Safety Factor	Onsite SOUTH (Channel Channel Bank 1.1

D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

Onsite SOUTH Channel_btm Date: 02/12/2009 Time: 17:03 ******** * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * * WEST Consultants, Inc. * * * $\dot{\mathbf{v}}$ \dot{x} * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * *******

Project: Cholla Ash Onsite Description: Onsite SOUTH Channel_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 3.53 ft/s N/A N/A 165. lbs/cu ft 1.00 0.61 ft N/A 1.1 Channel Bottom Angular

Output Results:

Local Velocity/Avg. Velocity Side Slope Correction Factor Correction for Layer Thickness	0.07 ft 3.53 ft/s 1.00 1.06 1.00
Correction for Layer Thickness Correction for Secondary Currents	$1.00 \\ 1.00$

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

3.53 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

0.08 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		3.53 ft/s
Output Results:		
Computed D50		0.16 ft
*** Using Gradations from CC	DE ETL 1110-2-120 **	*
	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
w100	15.	36.

)	15.	36.
)	7.	11.
5	2.	5.
	2.	

	Onsite SOUTH Channel_ SS Method	
Input Parameters:		
Average Channel Velocity		3.53 ft/s
Output Results:		
Computed D50		0.22 ft
*** Using Gradations from	COE ETL 1110-2-120 *	**
Specific Weight 165.0 lb Layer Thickness 0 Selected Minimum D30 Selected Minimum D90	0.750 ft 0.37 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isba	sh Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Furbulence Level	16	3.53 ft/s 5. lbs/cu ft High
Dutput Results:		
Computed D50		0.16 ft
*** Using Gradations from (COE ETL 1110-2-120 *	* *
Selected Minimum D30 (s/cu ft .750 ft 0.37 ft 0.53 ft	
	Stone Wei	ght, lbs
Percent Lighter by Weight	Minimum	Maximum

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	3.53 ft/s 4.71 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	0.31 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	3.53 ft/s 3.00 ft 165. lbs/cu ft N/A deg.

Riprap Placement Safety Factor	Onsite SOUTH Cha	annel_btm Channel Bottom 1.1
Output Results:		
Computed D50		0.02 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

ONSITE Channel DROP Sec-1 Date: 02/12/2009 Time: 15:41 * 4 RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * ☆ $\frac{1}{2}$ * March, 2005 * Version 3.0 * * * \star 20 * COPYRIGHT (c) 2005 * WEST CONSULTANTS, INC. ÷ * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ********

Project: Cholla Ash Onsite Description: Onsite Channel SEC-1 DROP

USACE Method _____

Average Trapezoidal Straight N/A 12.79 ft/s N/A 165. lbs/cu ft 1.00 0.64 ft 2.50 1.1 Channel Bank Angular

Output Results:

Rock Type

Computed D301.61 ftComputed Local Depth Averaged Velocity12.79 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		3.500 ft
Selected Minimum	D30	1.70 ft
Selected Minimum	D90	2.47 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	1482. 741.	3704. 1096.
	Page 1	

548.

_____ ASCE Method _____

Input Parameters: ______

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

12.79 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results: ____

Computed D50

W15

1.16 ft

818.

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		2.000	
Selected Minimum	D30	0.97	ft
Selected Minimum	D90	1.41	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50 W15	276. 138. 43.	691. 205. 102.
USE	BR Method	
Input Parameters:		
Average Channel Velocity	12	2.79 ft/s
Output Results:		
Computed D50		2.33 ft
*** Using Gradations from	COE ETL 1110-2-120 ***	
Specific Weight 165.0 lk Layer Thickness 4 Selected Minimum D30 Selected Minimum D90	4.000 ft 1.95 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	2212. 1106.	5529. 1637.

W15

346.

ONSITE Channel DROP Sec-1 USGS Method _____

Input Parameters:

Average Channel Velocity

12.79 ft/s

Output Results:

Computed D50

5.02 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Warning: The required stone size is greater than the largest USACE stone gradation.

_____ Isbash Method _____ Input Parameters: -----12.79 ft/s Average Channel Velocity Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: 2.09 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness4.000 ftSelected Minimum D301.95 ftSelected Minimum D902.82 ft Layer Thickness 4.000 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 2212. 5529. w50 1106. 1637. W15 346. 818. _____ HEC-11 Method _____

Input Parameters:

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement

.

Page 3

Safety Factor

Output Results:

Computed D50

1.23 ft

1.1

** FHWA Gradation**

Gradation Class Light Layer Thickness 2.60 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.80	500.
D50	1.30	200.
D10	0.40	5.

.

ONSITE Channel DROP Sec-1_btm Date: 02/12/2009 Time: 15:42 ****** * * RIPRAP DESIGN SYSTEM (RDS) * * ΒY $\dot{\mathbf{x}}$ WEST Consultants, Inc. * ÷ * * 2. * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-1 DROP bottom

USACE Method ____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 12.79 ft/s N/A N/A 165. lbs/cu ft 1.00 0.64 ft N/A 1.1 Channel Bottom Angular

Average

Output Results:

Computed D30 Computed Local Depth Averaged Velocity Local Velocity/Avg. Velocity Side Slope Correction Factor Correction for Layer Thickness	1.61 ft 12.79 ft/s 1.00 1.06 1.00
Correction for Layer Thickness	1.00
Correction for Secondary Currents	1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		3.500 ft
Selected Minimum	D30	1.70 ft
Selected Minimum	D90	2.47 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	1482. 741.	3704. 1096.
	Page 1	

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 12.79 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

1.07 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	
Layer Thickness		2.000	ft
Selected Minimum	D30	0.97	ft
Selected Minimum	D90	1.41	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50 W15	276. 138. 43.	691. 205. 102.
	USBR Method	
Input Parameters:		

Average	Channe]	Velocity

Output Results:

Computed D50

2.33 ft

12.79 ft/s

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		4.000	ft
Selected Minimum	D30	1.95	ft
Selected Minimum	D90	2.82	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	2212.	5529.
w50	1106.	1637.
W15	346.	818.

W15

ONSITE Channel DROP Sec-1_btm USGS Method _____

Input Parameters:

Average Channel Velocity

Output Results:

Computed D50

5.02 ft

12.79 ft/s

*** Using Gradations from COE ETL 1110-2-120 ***

Warning: The required stone size is greater than the largest USACE stone gradation.

Input Parameters: Average Channel Velocity 12.79 ft/s

Unit weight of Stone Turbulence Level 12.79 ft/s 165. lbs/cu ft High

Output Results:

Computed D50

2.09 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		4.000	ft
Selected Minimum	D30	1.95	ft
Selected Minimum	D90	2.82	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	2212.	5529.
w50	1106.	1637.
w15	346.	818.

_____ HEC-11 Method _____

Input Parameters:

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement 12.79 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom

Page 3

Safety Factor

Output Results:

Computed D50

0.92 ft

** FHWA Gradation**

Gradation Class Facing Layer Thickness 1.90 ft

Percent	Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10		$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

ONSITE Channel Sec-1 Date: 02/12/2009 Time: 15:43 ********* * 1 RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. ÷ * * * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. $\frac{1}{2}$ PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ************

Project: Cholla Ash Onsite Description: Onsite Channel SEC-1

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.43 ft/s N/A 165. lbs/cu ft 1.00 1.55 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.09 ftComputed Local Depth Averaged Velocity4.43 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

.

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 4.43 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.14 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weigh Minimum	t, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
U	SBR Method	
Input Parameters:		
Average Channel Velocity		4.43 ft/s
Output Results:		
Computed D50		0.26 ft
*** Using Gradations fro	m COE ETL 1110-2-120 ***	
Specific Weight 165.0	lbs/cu ft	

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
W15	2.	5.

	DNSITE Channel Sec Method	
Input Parameters:		
Average Channel Velocity		4.43 ft/s
Output Results:		
Computed D50		0.38 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
v100 w50 w15	15. 7. 2.	36. 11. 5.
Isbash	Method	
nput Parameters:		
verage Channel Velocity nit Weight of Stone urbulence Level	1	4.43 ft/s 65. lbs/cu ft High
output Results:		
omputed D50		0.25 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
pecific Weight 165.0 lbs/ ayer Thickness 0.7 elected Minimum D30 0. elected Minimum D90 0.	/cu ft /50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone We [.] Minimum	ight, lbs Maximum
/100 w50 w15	15. 7. 2.	36. 11. 5.

.....

ft/s 00 ft 2.50 deg. Bank 1.1

Output Results:

Computed D50

0.05 ft

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

ONSITE Channel Sec-1_btm Date: 02/12/2009 Time: 15:44 -2-RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * 4 * COPYRIGHT (c) 2005 * WEST CONSULTANTS, INC. * PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ************

Project: Cholla Ash Onsite Description: Onsite Channel SEC-1 bottom

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.43 ft/s N/A 165. lbs/cu ft 1.00 1.55 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.09 ftComputed Local Depth Averaged Velocity4.43 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement		4.43 ft/s N/A 165. lbs/cu ft Channel Bottom
Output Results:		
Computed D50		0.13 ft
*** Using Gradations from C	OE ETL 1110-2-12	20 ***
Specific Weight 165.0 lbs Layer Thickness 0. Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Minimum	Weight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		4.43 ft/s
Output Results:		
Computed D50		0.26 ft
*** Using Gradations from C	OE ETL 1110-2-12	20 ***
Selected Minimum D30 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Minimum	Weight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

ONSITE Channel Sec-1_btm USGS Method _ Input Parameters: 4.43 ft/s Average Channel Velocity Output Results: 0.38 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 15. 7. 36. w100 11. W50 2. 5. W15 Isbash Method _____ Input Parameters: _____ Average Channel Velocity 4.43 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: 0.25 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 0.750 ft 0.37 ft Specific Weight Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. 7. 2. W50 11. W15 5. _____ HEC-11 Method ___

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor

4.43 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1

Output Results:

Computed D50

0.04 ft

** FHWA Gradation**

Gradation Class Layer Thickness

.

Facing 1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

Date: 02/12/2009 Time: 15:50 * * RIPRAP DESIGN SYSTEM (RDS) * ΒY * * * WEST Consultants, Inc. * * * $\dot{\mathbf{x}}$ * Version 3.0 * March, 2005 4 * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-2

USACE Method _____

ONSITE Channel Sec-2

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 4.69 ft/s N/A N/A 165. lbs/cu ft 1.00 1.48 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.11 ftComputed Local Depth Averaged Velocity4.69 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
w100 w50	15.	36.
w50	Page 1	11.

____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

4.69 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.16 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight165.0lbs/cu ftLayer Thickness0.750ftSelected Minimum D300.37ftSelected Minimum D900.53ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR Method		
Input Parameters:		
Average Channel Velocity	4	.69 ft/s
Output Results:		
Computed D50		0.29 ft
*** Using Gradations from COE ETL 1110-2-120 ***		
Specific Weight165.0 lbs/cu ftLayer Thickness0.750 ftSelected Minimum D300.37 ftSelected Minimum D900.53 ft		
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

	ONSITE Channel Sec Method	
Input Parameters:		
Average Channel Velocity		4.69 ft/s
Output Results:		
Computed D50		0.43 ft
*** Using Gradations from Co	DE ETL 1110-2-120 ;	* * *
Specific Weight 165.0 lbs, Layer Thickness 0.7 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbash	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	16	4.69 ft/s 55. lbs/cu ft High
Output Results:	,	
Computed D50		0.28 ft
*** Using Gradations from CC)E ETL 1110-2-120 *	* *
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	cu ft 50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.

4.69 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1

Output Results:

Computed D50

0.06 ft

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 Ťt

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ \begin{array}{r} 1.30 \\ 0.95 \\ 0.40 \end{array} $	200. 75. 5.

ONSITE Channel Sec-2_btm Date: 02/12/2009 Time: 15:50 ****************************** * RIPRAP DESIGN SYSTEM (RDS) * * ΒY ÷ * WEST Consultants, Inc. * * * * * * Version 3.0 March, 2005 * * * $_{\star}$ * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ************

Project: Cholla Ash Onsite Description: Onsite Channel SEC-2_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.69 ft/s N/A N/A 165. lbs/cu ft 1.00 1.48 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.11 ftComputed Local Depth Averaged Velocity4.69 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1:06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Stone Weigh Minimum	it, lbs Maximum
15.	36.
/. Page 1	11.

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

4.69 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

0.14 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		4.69 ft/s
Output Results:		
Computed D50		0.29 ft
*** Using Gradations from C	OE ETL 1110-2-120 ***	
Selected Minimum D30 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

W15

ONSITE Channel Sec-2_btm USGS Method _ Input Parameters: Average Channel Velocity 4.69 ft/s Output Results: ----Computed D50 0.43 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft 0.37 ft Selected Minimum D30 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 2. 11. W15 5. ____ Isbash Method ____ Input Parameters: Average Channel Velocity 4.69 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: Computed D50 0.28 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 11. W15 2. 5. _____ HEC-11 Method _____

4.69 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1

Output Results:

Computed D50

0.05 ft

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

ONSITE Channel Sec-3 Date: 02/12/2009 Time: 15:51 ******* * RIPRAP DESIGN SYSTEM (RDS) 4 * * ΒY * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. $-\frac{1}{2}$ * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-3

USACE Method _____

Average Trapezoidal Straight N/A 3.63 ft/s N/A 165. lbs/cu ft 1.00 1.80 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.05 ftComputed Local Depth Averaged Velocity3.63 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100	15.	36.
w50	1.	11.
	Page 1	

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

3.63 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results: -----

Computed D50

0.09 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity	3	6.63 ft/s
Output Results:		
Computed D50		0.17 ft
*** Using Gradations from CC	DE ETL 1110-2-120 ***	
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	'cu ft '50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

	ISITE Channel Se 1ethod	
Input Parameters:		
Average Channel Velocity		3.63 ft/s
Output Results:		
Computed D50		0.23 ft
*** Using Gradations from COE	ETL 1110-2-120	* * *
Specific Weight165.0 lbs/cLayer Thickness0.75Selected Minimum D300.3Selected Minimum D900.5	u ft O ft 7 ft 3 ft	
Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbash	Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level		3.63 ft/s 165. lbs/cu ft High
Output Results:		
Computed D50		0.17 ft
*** Using Gradations from COE	ETL 1110-2-120	* * *
Specific Weight 165.0 lbs/co Layer Thickness 0.750 Selected Minimum D30 0.3 Selected Minimum D90 0.5	u ft 0 ft 7 ft 3 ft	
Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
HEC-11 M	Method	

3.63 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1

Output Results:

Computed D50

0.03 ft

e

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

ONSITE Channel Sec-3_btm Date: 02/12/2009 Time: 15:52 *** * 4. RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 ÷ * WEST CONSULTANTS, INC. 4 * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-3_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 3.63 ft/s N/A N/A 165. lbs/cu ft 1.00 1.80 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.05 ftComputed Local Depth Averaged Velocity3.63 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft	
Layer Thickness		0.750 ft	
Selected Minimum		0.37 ft	
Selected Minimum	D90	0.53 ft	

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

_____ ASCE Method _____ Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

3.63 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

w100

W50

W15

0.09 ft

36.

11.

5.

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR Met		
Input Parameters:		
Average Channel Velocity		3.63 ft/s
Output Results:		
Computed D50		0.17 ft
*** Using Gradations from COE E	TL 1110-2-120 ***	
Specific Weight165.0lbs/cuLayer Thickness0.750Selected Minimum D300.37Selected Minimum D900.53	ft ft ft ft	
Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum

15. 7. 2.

W15

ONSITE Channel Sec-3_btm USGS Method Input Parameters: _____ 3.63 ft/s Average Channel Velocity Output Results: _____ 0.23 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight Layer Thickness 0.750 ft 0.37 ft Selected Minimum D30 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. 7. W50 11. 2. W15 5. Isbash Method ___ Input Parameters: -----Average Channel Velocity 3.63 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: _____ Computed D50 0.17 ft *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 0.750 ft Layer Thickness Selected Minimum D30 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. 7. 2. 11. w50 5. W15 HEC-11 Method __

Input Parameters:

3.63 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1

Output Results:

Computed D50

0.02 ft

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

ONSITE Channel Sec-4 Date: 02/12/2009 Time: 16:30 *** 4. RIPRAP DESIGN SYSTEM (RDS) \star * ΒY * * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 * ي. * WEST CONSULTANTS, INC. PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ***********

Project: Cholla Ash Onsite Description: Onsite Channel SEC-4

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.63 ft/s N/A N/A 165. lbs/cu ft 1.00 1.49 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.10 ftComputed Local Depth Averaged Velocity4.63 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

W15

ASC	E Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	165. Ch	4.63 ft/s 2.50 lbs/cu ft annel Bank
Output Results:		
Computed D50		0.15 ft
*** Using Gradations from o	COE ETL 1110-2-120 ***	
Specific Weight 165.0 lb Layer Thickness 0 Selected Minimum D30 0 Selected Minimum D90 0	s/cu ft .750 ft 0.37 ft 0.53 ft	
Percent Lighter by Weight	Stone Weigh Minimum	t, 1bs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBF	R Method	
Input Parameters:		
Average Channel Velocity		4.63 ft/s
Output Results:		
Computed D50		0.29 ft
*** Using Gradations from C	COE ETL 1110-2-120 ***	
Selected Minimum D30 (5/cu ft 750 ft).37 ft).53 ft	
Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

ONSITE Channel Sec-4 USGS Method _ Input Parameters: 4.63 ft/s Average Channel Velocity Output Results: 0.42 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 15. 7. 36. w100 11. W50 2. 5. W15 Isbash Method ___ Input Parameters: . _____**____** Average Channel Velocity 4.63 ft/s 165. lbs/cu ft Unit Weight of Stone High Turbulence Level Output Results: 0.27 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. 7. W50 11. 2. 5. W15 _____ HEC-11 Method ___

4.63 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1

Output Results:

Computed D50

0.06 ft

** FHWA Gradation**

Gradation Class	
Layer Thickness	

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ \begin{array}{r} 1.30 \\ 0.95 \\ 0.40 \end{array} $	200. 75. 5.

Facing 1.90 ft

ONSITE Channel Sec-4_btm Date: 02/12/2009 Time: 16:31 * RIPRAP DESIGN SYSTEM (RDS) 10 * * ΒY * WEST Consultants, Inc. * * * * * * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SUITE 340 +AX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-4_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.63 ft/s N/A N/A 165. lbs/cu ft 1.00 1.49 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.10 ftComputed Local Depth Averaged Velocity4.63 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 4.63 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

0.14 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		4.63 ft/s
Output Results:		
Computed D50		0.29 ft
*** Using Gradations from CO	DE ETL 1110-2-120 *	**
Specific Weight165.0 lbs,Layer Thickness0.3Selected Minimum D300Selected Minimum D900	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
w100	15.	36.

w100	15.	36.
w50	7.	11.
w15	2.	5.

ONSITE Channel Sec-4_btm USGS Method _ Input Parameters: -----4.63 ft/s Average Channel Velocity Output Results: 0.42 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 36. 15. 7. w50 11. 2. W15 5. Isbash Method ___ Input Parameters: _____ Average Channel Velocity 4.63 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Computed D50 0.27 ft *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 11. 2. 5. W15 ____ HEC-11 Method ___

Input Parameters:

4.63 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1

Output Results:

Computed D50

0.04 ft

** FHWA Gradation**

Gradat	ion	Clack	
Glauat	IOII	Class	•
Layer T	rhic	lunare	
Layer	IIIIC	.KHESS)

Facing 1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	1.30 0.95 0.40	200. 75.

ONSITE Channel Sec-5-6-7 Date: 02/12/2009 Time: 16:32 * RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * * * * * Version 3.0 March, 2005 * 2 ÷ ÷ * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-5-6-7

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 3.53 ft/s N/A N/A 165. lbs/cu ft 1.00 0.92 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.06 ftComputed Local Depth Averaged Velocity3.53 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	16	3.53 ft/s 2.50 5. lbs/cu ft Channel Bank
Output Results:		
Computed D50		0.09 ft
*** Using Gradations from Co	DE ETL 1110-2-120 **	* *
Specific Weight 165.0 lbs, Layer Thickness 0.3 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ght, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		3.53 ft/s
Output Results:		
Computed D50		0.16 ft
*** Using Gradations from CC	DE ETL 1110-2-120 **	* *
Selected Minimum D30 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

ONSITE Channel Sec-5-6-7 USGS Method _ Input Parameters: Average Channel Velocity 3.53 ft/s Output Results: 0.22 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft Layer Thickness 0.37 ft Selected Minimum D30 0.53 ft Selected Minimum D90 Stone Weight, 1bs Minimum Percent Lighter by Weight Maximum 36. 15. w100 7. 11. W50 W15 2. 5. Isbash Method _____ Input Parameters: _____ Average Channel Velocity 3.53 ft/s 165. lbs/cu ft Unit Weight of Stone Turbulence Level High Output Results: Computed D50 0.16 ft *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 15. 36. w100 7. 11. w50 2. 5. W15 _____ HEC-11 Method ___

3.53 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1

Output Results:

Computed D50

0.03 ft

** FHWA Gradation**

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

ONSITE Channel Sec-5-6-7_btm Date: 02/12/2009 Time: 16:32 э., RIPRAP DESIGN SYSTEM (RDS) * ΒY * * * WEST Consultants, Inc. * * * * Version 3.0 March, 2005 * \dot{x} * ** * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-5-6-7_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 3.53 ft/s N/A 165. lbs/cu ft 1.00 0.92 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.06 ftComputed Local Depth Averaged Velocity3.53 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

W15

W15

ASCE Method _____ **Input Parameters:** Local Velocity Cotangent of Side slope 3.53 ft/s N/A Unit Weight of Stone Riprap Placement 165. lbs/cu ft Channel Bottom 6 Output Results: _____ Computed D50 0.08 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 11. W15 2. 5. _____ USBR Method ____ Input Parameters: _____ Average Channel Velocity 3.53 ft/s Output Results: _____ Computed D50 0.16 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. 7. 2. W50 11.

5.

ONSITE Channel Sec-5-6-7_btm USGS Method _____

Input Parameters: 3.53 ft/s Average Channel Velocity Output Results: 0.22 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 15. 36. w100 7. 11. w50 2. w15 5. Isbash Method ___ Input Parameters: _____ Average Channel Velocity 3.53 ft/s 165. lbs/cu ft Unit Weight of Stone High Turbulence Level Output Results: 0.16 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. 7. 11. W50 2. 5. W15 _____ HEC-11 Method ____

3.53 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1

Output Results: ____

Computed D50

D10

0.02 ft

75. 5.

** FHWA Gradation**

0.40

Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50	1.30 0.95	200. 75.

ONSITE Channel DROP Sec-7 Date: 02/12/2009 Time: 16:41 * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * * WEST Consultants, Inc. * * * * Version 3.0 March, 2005 * 2 * * ÷ * COPYRIGHT (c) 2005 * WEST CONSULTANTS, INC. ÷ PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * *******

Project: Cholla Ash Onsite Description: Onsite Channel DROP SEC-7

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 9.44 ft/s N/A 165. lbs/cu ft 1.00 0.39 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.85 ftComputed Local Depth Averaged Velocity9.44 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		2.000 ft
Selected Minimum		0.97 ft
Selected Minimum	D90	1.41 ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50	276. 138.	691. 205.
	Page 1	

W15

.

.

102.

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement		9.44 ft/s 2.50 165. lbs/cu ft Channel Bank
Output Results:		
Computed D50		0.63 ft
*** Using Gradations from C	OE ETL 1110-2-120	***
Specific Weight 165.0 lbs Layer Thickness 1. Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 250 ft .61 ft .88 ft	
Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
W100 W50 W15	67. 34. 11.	169. 50. 25.
USBR	Method	
Input Parameters:		
Average Channel Velocity		9.44 ft/s
Output Results:		
Computed D50		1.24 ft
*** Using Gradations from Co	DE ETL 1110-2-120	* * *
Selected Minimum D30 1	/cu ft 250 ft .10 ft .59 ft	
Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
W100 W50 W15	394. 197. 62.	984. 291. 146.

ONSITE Channel DROP Sec-7 USGS Method _ Input Parameters: ______ Average Channel Velocity 9.44 ft/s Output Results: -----Computed D50 2.39 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight Layer Thickness 165.0 lbs/cu ft 4.500 ft 2.19 ft 3.17 ft Selected Minimum D30 Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 7873. 3149. 1575. 2330. 492. 1165. _____ Isbash Method _____ Input Parameters: _____ Average Channel Velocity Unit Weight of Stone 9.44 ft/s 165. lbs/cu ft Turbulence Level High Output Results: _____ Computed D50 1.14 ft *** Using Gradations from COE ETL 1110-2-120 *** specific weight 165 0 lbs/cu ft

opeen re nergne	T01.0	
Layer Thickness		2.000 ft
Selected Minimum	D30	0.97 ft
Selected Minimum	D90	1.41 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	276.	691.
w50	138.	205.
w15	43.	102.

_____ HEC-11 Method _____

Input Parameters:

w100

W50

W15

9.44 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1

Output Results:

Computed D50

0.50 ft

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ \begin{array}{r} 1.30 \\ 0.95 \\ 0.40 \end{array} $	200. 75. 5.

ONSITE Channel DROP Sec-7_btm Date: 02/12/2009 Time: 16:41 * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * * WEST Consultants, Inc. × -!-* $\mathcal{L}_{\mathcal{F}}$ March, 2005 * * Version 3.0 * * * * * COPYRIGHT (c) 2005 * * * WEST CONSULTANTS, INC. PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * *************************

Project: Cholla Ash Onsite Description: Onsite Channel DROP SEC-7_btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Straight N/A 9.44 ft/s N/A N/A 165. lbs/cu ft 1.00 0.39 ft N/A 1.1 Channel Bottom Angular

Average Trapezoidal

Output Results:

Computed D300.85 ftComputed Local Depth Averaged Velocity9.44 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		2.000	
Selected Minimum	D30	0.97	ft
Selected Minimum	D90	1.41	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	276.	691. 205.
WSO	Page 1	203.

____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

9.44 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results: -----

Computed D50

W15

0.58 ft

146.

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight165.0lbs/cu ftLayer Thickness1.000 ftSelected Minimum D300.49 ftSelected Minimum D900.70 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50 W15	35. 17. 5.	86. 26. 13.
USBF	R Method	
Input Parameters:		
Average Channel Velocity	9	.44 ft/s
Output Results:		
Computed D50		1.24 ft
*** Using Gradations from C	COE ETL 1110-2-120 ***	
Specific Weight 165.0 lbs Layer Thickness 2. Selected Minimum D30 1 Selected Minimum D90 1	.250 ft L.10 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	394. 197.	984. 291.

62.

W15

ONSITE Channel DROP Sec-7_btm USGS Method ___ Input Parameters: Average Channel Velocity 9.44 ft/s Output Results: -----2.39 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 4.500 ft Layer Thickness Selected Minimum D30 2.19 ft 3.17 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 7873. W100 3149. 1575. 2330. W50 w15 492. 1165. _____ Isbash Method _____ Input Parameters: ______________ Average Channel Velocity 9.44 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: _____ Computed D50 1.14 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 2.000 ft Layer Thickness Selected Minimum D30 0.97 ft 1.41 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 276. 691. W50 138. 205. . 102. W15 43. _____ HEC-11 Method _____

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor		9.44 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1
Output Results:		
Computed D50		0.37 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

ONSITE Channel Sec-8-9 Date: 02/12/2009 Time: 16:42 * * RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * -2-* * Version 3.0 March, 2005 * * -2-* * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-8-9

USACE Method _____

Average Trapezoidal

Straight

165. lbs/cu ft

Channel Bank

N/A 2.79 ft/s

N/A

N/A

N/A

1.00

1.1

1.12 ft 2.50

Angular

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Output Results:

Computed D300.03 ftComputed Local Depth Averaged Velocity2.79 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

____ ASCE Method _____

Input Parameters: _____

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

2.79 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.05 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight165.0lbs/cu ftLayer Thickness0.750ftSelected Minimum D300.37ftSelected Minimum D900.53ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR Me	thod	<u>. </u>
Input Parameters:		
Average Channel Velocity	2	.79 ft/s
Output Results:		
Computed D50		0.10 ft
*** Using Gradations from COE	ETL 1110-2-120 ***	
Specific Weight 165.0 lbs/cu Layer Thickness 0.750 Selected Minimum D30 0.37 Selected Minimum D90 0.53	ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

W15

ONSITE Channel Sec-8-9 USGS Method		
Input Parameters:		
Average Channel Velocity		2.79 ft/s
Output Results:		
Computed D50		0.12 ft
*** Using Gradations from CC	DE ETL 1110-2-120 *	***
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
Isbash	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	16	2.79 ft/s 55. lbs/cu ft High
Output Results:		
Computed D50		0.10 ft
*** Using Gradations from CC	DE ETL 1110-2-120 *	***
Selected Minimum D30 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
HEC-12	1 Method	

Average Channel Velocity	2.79 ft/s
Average Flow Depth	4.00 ft
Unit Weight of Stone	165. lbs/cu ft
Cotangent of Side Slope	2.50
Material Angle of Repose	41.00 deg.
Riprap Placement	Channel Bank
Safety Factor	1.1
Output Results:	

Computed D50

0.01 ft

** FHWA Gradation**

Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ \begin{array}{r} 1.30 \\ 0.95 \\ 0.40 \end{array} $	200. 75. 5.

Date: 02/12/2009 Time: 16:43 RIPRAP DESIGN SYSTEM (RDS) * BY WEST Consultants, Inc. March, 2005 * * Version 3.0 * COPYRIGHT (c) 2005 * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Onsite Description: Onsite Channel SEC-8-9_btm

_ USACE Method _____

Input Parameters: _____ Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 2.79 ft/s N/A N/A 165. lbs/cu ft 1.00 1.12 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.03 ftComputed Local Depth Averaged Velocity2.79 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	n D30	0.37	ft
Selected Minimum	n D90	0.53	ft

,

Percent Lighter by Weight		
W100 W50	15. 7.	36. 11.
W15	2.	5.
ASCE	Method	
T		
Input Parameters:		
Local Velocity		2.79 ft/s
Cotangent of Side slope Unit Weight of Stone	1.6	N/A 5. lbs/cu ft
Riprap Placement		annel Bottom
Output Results:		
Computed D50		0.05 ft
*** Using Gradations from CO	DE ETL 1110-2-120 *	* *
Specific Weight 165.0 lbs/	cu ft	
Layer Thickness 0.7 Selected Minimum D30 0.	50 ft	
Selected Minimum D30 0. Selected Minimum D90 0.	37 ft 53 ft	
	55 10	
	Stone Wei	
Percent Lighter by Weight		ght, lbs Maximum
W100	Minimum 15.	Maximum 36.
	Minimum	Maximum
W100 W50 W15	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15	Minimum 15. 7.	Maximum 36. 11. 5.
W15	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15 USBR Input Parameters:	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15 USBR Input Parameters:	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15 Input Parameters: Average Channel Velocity	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15 Input Parameters: Average Channel Velocity	Minimum 15. 7. 2.	Maximum 36. 11. 5.
W100 W50 W15 USBR	Minimum 15. 7. 2.	Maximum 36. 11. 5. 2.79 ft/s
W100 W50 W15 USBR Input Parameters: Average Channel Velocity Output Results: Computed D50	Minimum 15. 7. 2. Method	Maximum 36. 11. 5. 2.79 ft/s 0.10 ft
W100 W50 W15 USBR Input Parameters: Average Channel Velocity Dutput Results:	Minimum 15. 7. 2. Method	Maximum 36. 11. 5. 2.79 ft/s 0.10 ft
<pre>/100 W50 W15USBR nput Parameters:verage Channel Velocity utput Results:omputed D50 *** Using Gradations from CO pecific Weight 165.0 lbs/</pre>	Minimum 15. 7. 2. Method E ETL 1110-2-120 *	Maximum 36. 11. 5. 2.79 ft/s 0.10 ft

•

Selected Minimum D300.37 ftSelected Minimum D900.53 ft

ł

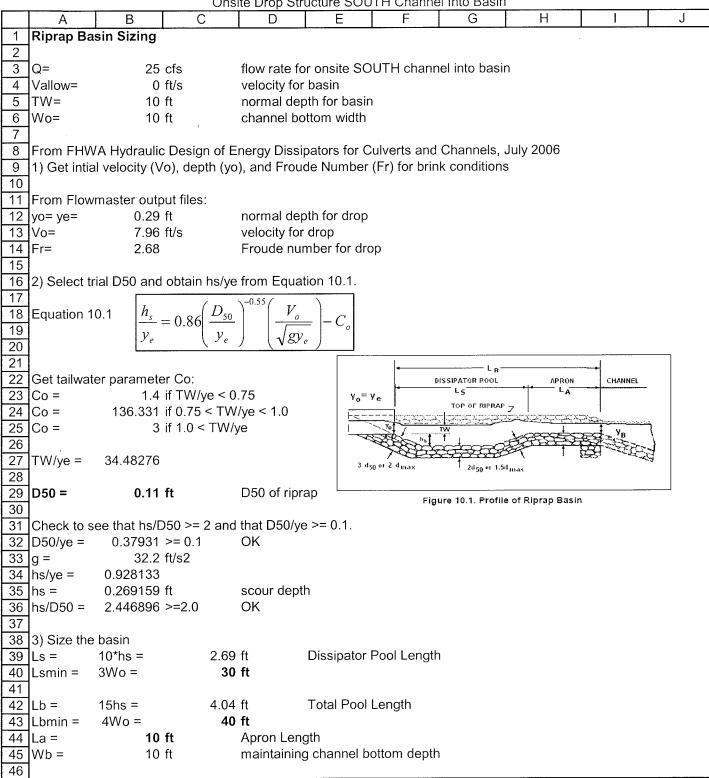
Percent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USGS	Method	
Input Parameters:		
Average Channel Velocity		2.79 ft/s
Output Results:		
Computed D50		0.12 ft
*** Using Gradations from CC)E ETL 1110-2-120	* * *
Specific Weight165.0lbs/Layer Thickness0.7Selected Minimum D300.7Selected Minimum D900.7	750 ft	
Percent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbash	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	1	2.79 ft/s 65. lbs/cu ft High
Output Results:		
Computed D50		0.10 ft

ŝ

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight165.0lbs/cu ftLayer Thickness0.750 ftSelected Minimum D300.37 ftSelected Minimum D900.53 ft

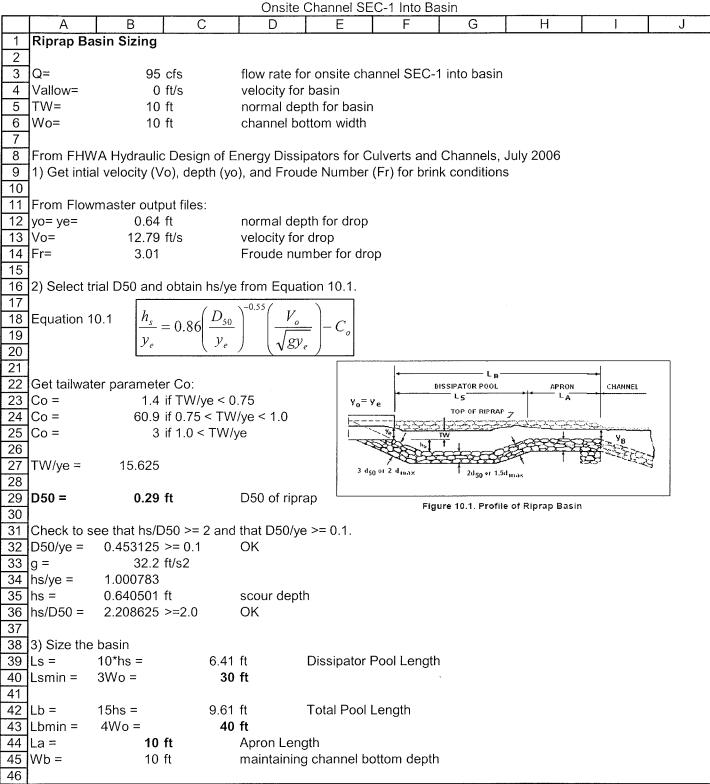
t


Percent Lighter by Weight		Weight,	lbs Maximum
W100 W50 W15	15. 7. 2.		36. 11. 5.
Н	EC-11 Method	1	
Input Parameters:			
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor		165. lb	79 ft/s 4.00 ft os/cu ft N/A deg. . Bottom 1.1
Output Results:			
Computed D50			0.01 ft
**]	FHWA Gradation**		
Gradation Class Layer Thickness	Facing 1.90 ft		
Percent Smaller by Size	Rock Size, ft F	lock Weig	ht, lbs
D100 D50 D10	1.30 0.95 0.40		200. 75. 5.

ON-SITE CHANNEL

DROP STRUCTURE CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc


Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Onsite Drop Structure SOUTH Channel Into Basin

Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Disite Drop Structure SOUTH Channel Into Basir

			Ons	ite Drop St	tructure SC	OUTH C	Channe	el Into Basir	ו		
	A	В	С	D	E		F	G	Н		J
47	Hydraulic	Jump	· · · · · · · ·							-	
48	From Drai	nage Desigr	n Manual for	Maricopa (County, Hyd	draulics	s: Hydr	aulic Struct	ures, 2003		
49	Y1 =	0.29	ft	upstream	normal de	pth for (drop				
50	Ydn =	10	ft	downstre	eam norma	al depti	h basi	n			
51	Q =	25	cfs		gh the drop						
52	g =	32.2	ft/s2		0 1						
	A1 =	3.14		area of flo	w through	the dro	a				
	A2 =	10.43			w in next s		17				
	z =	2.5		sideslope		٦					
	b =	10		•	dth of char	nel		 A 	2 V.	<u>)</u> в	2 <u>_</u>
57	5	10		bottonn wi	attroi onai		V1	553			
	2) Calculat	e seguant h	eight of jum	n			¢/	XC	$\overline{V_2}$ $\overline{V_2}$ $\phi(\overline{Z})$		2
59	Equation 7			5.			У ₁	′ ⊧L	+ Î	_	
60		1 1	Γ.	<u> </u>			V ₁		Ŷ <u></u> Ţ V₁	ф (₽
61		$Y_{2} = \frac{1}{2}$	$Y_{1} \left \left(1 + 8F_{r1}^{2} \right) \right $	$)^{2} - 1 $				KC55	<u>2</u>	X022-	- ¥2
62		- 2		í _			У1		\rightarrow TW y_1	T	$W \rightarrow V_2$
	Y2 =	0.96	f+	OK	height of	iumn		¢/	· V2	<u>•</u>	-2
64	12 -	0.90	ιι	UN	neight of	յսութ		с		D	
	2) Another	abaali an a	equant heigh	tofiumo				Figure 6.10. Hydrau	lic Jump Types Slopin	g Channeis (Bradley, 1	961;
66	Use Fig. 7-		equant neigh	it of jump.							
67	USE FIG. 7		V=	7.06	6 ft/s						
	Fr1 =		top width =	11.46							
69	ГГ I — -		•			– flo		, top width			
70			ym = Fr1 =	0.27 2.68		- 110	w area	a / top width	1		
70	L			2.00	0						
72	J = Y2 / Y1			t - b/(
73	J = TZ / T I J =			t = b/(zy1)	13.7	0					
73	J – Y2 =	3.1 0.899	£4	t =							
74	12	0.099	11	use larger	height of	Jump					
	1) Coloulat	o donth at h	eginning loc	ation of ium	a n						
	Equation 7			ation of juit	ιp.	_					
78		ZY^3	$ZY_1^2 = O$	ZY_2^3	$bY_2^2 = O$						
70		$\left \frac{-1}{2} + \frac{1}{2} \right $	$\frac{1}{2} + \frac{z}{z}$	$=\frac{2}{2}+\frac{1}{2}$	$\frac{1}{3} + \frac{2}{gA_2}$	-					
80		3	$2 gA_1$	3	$S gA_2$?					
		0 272	Pog -	0 275	5 /Diuglig		forV	2 until hoth	sidos oquel		
	Leq =	0.373							sides equal)		
82	Yb =	0.29	H	OK	depth at j		cation				
		a langth of:									
		e length of j	ump.								
	Use Fig. 7-										
	Lj / y1 =	33	£1								
	Lj =	9.57	π	= jump ler	igth						
88	The			~~	. <i>EL</i>						
89	Ineretore		th of jump =) ft						
90			h of apron =) ft						
91		I otal Leng	th of basin =	40) ft						

Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump

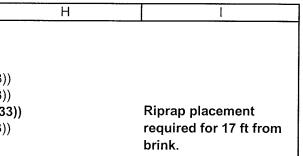
Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Onsite Channel SEC 1 Into Basin

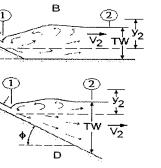
				Onsite	Channel SE	EC-1 Ir	nto Ba	isin			
	A	В	С	D	E	F	F	G	Н		J
47	Hydraulic	Jump								-	
48	From Drai	nage Desigr	n Manual for	Maricopa C	ounty, Hydr	aulics	: Hydr	aulic Struc	tures, 2003		
	Y1 =	0.64			normal dept						
50	Ydn =	10	ft		am normal			n			
51	Q =		cfs	flow throug		•					
	g =	32.2			,						
	A1 =	7.43		area of flow	w through th	ne dror	n				
	A2 =	10.43			w in next se		٢				
55		2.5		sideslope l		саон г					
56		10			Ith of chann			(1) A	(2)	① ^B	2 <u> </u>
57	D –	10		bottom wid			V1	5		1	$\frac{1}{\sqrt{2}}$
	2) Coloulat	to soquant b	eight of jum	2			¢/	XELL	$- \overline{V_2} \overset{y_2}{+} \phi (?)$		
	Equation 7			J.			У ₁ ′	, ⊨L	+l		
60		.2	Γ,	$\overline{1}$			V1	()	² ∓ V1	(1)	
61		$Y_{2} = -\frac{1}{2}$	$Y_1 \left(1 + 8F_{r1}^2 \right)$	$)^{\overline{2}} - 1$				(3)		4050-	<u> </u>
62		2		´			У ₁ ́		Tw ^y 1		$w \overline{v_2}$
	V0 -	0.40	£1		المعتملة معاني			¢/	V2	<u>•/</u>	v2
1	Y2 =	2.42	IL	OK	height of ju	imb [c		D	×.
64								Figure 6.10. Hydra	ulic Jump Types Slopir	ng Channels (Bradley.	1961:
			equant heigh	it of jump.							
	Use Fig. 7			40.70	<u>.</u>						
67	-	* *	V=	12.79							
	Fr1 =		top width =	13.20							
69		$\sqrt{gy_m}$	ym =	0.56	ft	= flov	w area	a / top widt	h		
70	L	v <u>s</u> , <u>m</u>	Fr1 =	3.00							
71											
	J = Y2 / Y1			t = b/(zy1)							
73	J =	3.5	<i>c.</i>	t = .	6.25						
	Y2 =	2.24	ft	use larger	height of ju	ımp					
75											
			eginning loc	ation of jum	p.						
	Equation 7	$.3$ $7v^3$	$7Y^2$ O	7V ³ h	V^2						
78		$\left \frac{\mathcal{L}I}{\mathcal{L}I}\right $ +	$\frac{z_{I_1}}{z_{I_1}} + \frac{y}{z_{I_2}}$	$=\frac{L_{1_2}}{2}+\frac{D}{2}$	$\frac{I_2}{2} + \frac{\mathcal{V}}{2}$						
79		3	$2 gA_{I}$	3	3 gA_2						
80		L					<u> </u>				
	Leq =	1.128						2 until both	n sides equal)	
	Yb =	0.48	ft	OK	depth at jur	mp loc	cation				
83											
		e length of j	ump.								
	Use Fig. 7-										
86	Lj / y1 =	55									
87	Lj =	35.2	ft	= jump leng	gth						
88											
89	Therefore	e: Min. Leng	th of jump =	36	ft			<i>r</i> .			
90		Min. Lengt	h of apron =	10	ft						
91		Total Leng	th of basin =	46	ft						
									. <u>.</u>		

Cholla Ash Monofill Riprap Sizing and Hydraulic Jump Onsite Channel SEC-7 Drop Structure

Image: Control of the second state of the second		A	B	С	D	E		F	G	Н	1	J
$ \begin{array}{c} \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 4 \\ \hline 4 \\ \hline 2 \\ \hline 4 \\ \hline 8 \\ \hline 7 \\ \hline 8 \\ \hline 7 \\ 7 \\$	1		L	- L		·	ł		-		•	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2											
Image: Provide the set of t		0=	40	cfs	flow rate for	or onsite	channe	al SEC-J	7 just befor	e brink of dro	מכ	
		-									- 4	
6Wore10 ftchannel bottom width7From FHWA Hydraulic Dasign of Energy Dissipators for Culverts and Channels, July 200691) Get initial velocity (Ve), depth (yo), and Froude Number (Fr) for brink conditions11From Flowmaster output files:12yor yee0.39 ftnormal depth for drop13Vor9.44 ftyvelocity for drop14Free2.79Froude number for drop152) Solect trial D50 and obtain hs/ye from Equation 10.1.17 $\frac{h_x}{y} = 0.86 \left(\frac{D_{20}}{y_x}\right)^{453} \left(\frac{V_x}{\sqrt{gy_x}}\right) - C_x$ 22Get tailwater parameter Co:23Co =7.835897 if 0.75 < TW/ye < 1.026Co =7.835897 if 0.75 < TW/ye < 1.027TW/ye =2.35897428D50 =0.16 ft29D50 =0.16 ft20D50 vig =0.410256 >= 0.120D50/ye =0.23752 ft21Co =2.234898 >= 2.023p =0.35752 ft24Lip mine 3Wo =30 ft39Size the basin3939Size the basin3939Size the basin3910 ftApron Length41La =10 ft42Lup mine 4Wo =40 ft43Luping Figure 10.344La =40ft4142La =10 ft43Luping Figure 10.344452.192581 ft4647	_				-					dron		
$ \begin{array}{c} \hline \hline$		4							20 0, publ	arop		
$\frac{1}{8} = From FHWA Hydraulic Design of Energy Dissipators for Culvers and Channels, July 2006 1) Get intial velocity (Vo), depth (yo), and Froude Number (Fr) for brink conditions 1) From Flowmaster output files: 12 yo=ye= 0.39 ff normal depth for drop 13 Vo= 9.44 ft/s velocity for drop 14 Fr= 2.79 Froude number for drop 15 16 (2) Select trial D50 and obtain hs/ye from Equation 10.1. 17 18 Equation 10.1 \frac{h_x}{p_x} = 0.86 \left(\frac{D_{30}}{y_x}\right)^{-0.35} \left(\frac{V_x}{\sqrt{gv_x}}\right) - C_02122 Get tailwater parameter Co:23 Co = 1.4 if TW/ye < 0.7524 Co = 7.833897 if 0.75 × TW/ye < 1.025 Co = 3 if 1.0 × TW/ye < 1.026 Co = 7.833897 if 0.75 × TW/ye < 1.027 TW/ye = 2.3589742829 D50 = 0.16 ft D50 of niprap193030 Check to see that hs/500 > 2 and that D50/ye > = 0.1.32 g = 32.2 ft/s233 hs/ye = 0.91671735 hs = 0.36752 ft scour depth36 hs/D50 = 2.234498 >=2.0 OK3739 JSize the basin39 LS = 10°hs = 5.36 ft Total Pool Length414142 Lb = 16hs = 5.36 ft Total Pool Length43 Lbmin = 4Wo = 40 ft44 La = 10 ft Apron Length45 Computer quivalent circular diameter, De, for brink area5758 Rock size for riprap after energy dissipators Equation 10.654 Scize for riprap after energy dissipators Equation 10.654 Scize for riprap after energy dissipators Equation 10.655 Rock size for riprap after energy dissipators Equation 10.654 Scize for riprap after energy dissipators Equation 10.654 Scize for riprap after energy dissipators Equation 10.655 Rock size for riprap after energy dissipators Equation 10.654 Scize for riprap after energy dissipators Equation 10.655 Rock size for riprap after energy dissipators Equation 10.655 Rock size for riprap after energy dissipators Equation 10.656 LDe L (h) VIVo (Fig.57 Act 3 sector for 3 sector for 3 sector for 3 sector for 5 se$		1	10		onumer be							
$ \begin{array}{ c c c } \hline \hline$		From FHM	/A Hydrauli	c Design of F	nerav Dissi	inators fo	r Culve	erts and	Channels	July 2006		
Image: constraint of the state of the												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$), and i iou				K COndition.	5		
$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 13 \\ 13 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$		From Flow	master out	nut files:								
13Voc9.44 fVsvelocity for drop14Fr=2.79Froude number for drop152) Select trial D50 and obtain hs/ye from Equation 10.1.17Equation 10.1 $\left[\frac{h_s}{y_s} = 0.86 \left(\frac{D_{s0}}{y_s}\right)^{-9.55} \left(\frac{V_o}{\sqrt{gV_s}}\right) - C_o\right]$ 21Get tailwater parameter Co:22Co =1.4 if TW/ye < 0.75					normal der	ath for dr	20					
Image: style sty							οp					
$\frac{15}{16} \\ 2) Select trial D50 and obtain hs/ye from Equation 10.1. \frac{h}{y_{r}} = 0.86 \left(\frac{D_{30}}{y_{r}}\right)^{-3.5} \left(\frac{V_{o}}{\sqrt{gy_{r}}}\right) - C_{o} \frac{19}{20} \\ 22 \\ Cot = 1.4 \text{ if } W/ye < 0.75 \\ 23 \\ Co = 1.4 \text{ if } W/ye < 0.75 \\ 24 \\ Co = 7.835897 \text{ if } 0.75 < W/ye < 1.0 \\ 26 \\ 27 \\ TW/ye = 2.358974 \\ 28 \\ 26 \\ 27 \\ TW/ye = 2.358974 \\ 28 \\ 29 \\ 50 = 0.16 \text{ ft} D50 \text{ of riprap} \frac{v_{s} - v_{s} -$							dron					
Interval Select trial D50 and obtain hs/ye from Equation 10.1. Image: Imag			2.70		i ioudo na		arop					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2) Select t	rial D50 and	l obtain hs/ve	from Equa	tion 10.1						
Image: Figure 10.1 $\frac{h_{x}}{y_{x}} = 0.86 \left(\frac{D_{30}}{y_{x}} \right)^{m} \left(\frac{V_{o}}{\sqrt{gy_{x}}} \right)^{-C_{o}}$ Image: Figure 10.1 $\frac{h_{x}}{y_{x}} = 0.86 \left(\frac{D_{30}}{y_{x}} \right)^{m} \left(\frac{V_{o}}{\sqrt{gy_{x}}} \right)^{-C_{o}}$ Image: Figure 10.1 $\frac{h_{x}}{10.75} < TW/ye < 0.75$ Image: Figure 10.1 $\frac{h_{x}}{10.75} < TW/ye < 1.0$ Image: Figure 10.1 $\frac{h_{x}}{10.97} < \frac{h_{x}}{10.97} < \frac{h_{x}}$		2) 00/000					•					
$\frac{19}{20} \qquad \qquad$		Equation 1	0.1 $h_{\rm h}$	(D_{50})	$^{-0.55}(V_{\odot})$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				$= 0.86 - \frac{30}{10}$		$= \left -C_{o} \right $						
21 Get tailwater parameter Co: Image: 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1			Ye	(ye) $\sqrt{3y}$	e)						
²² Co = 1.4 if TW/ye < 0.75 ²³ Co = .7.835897 if 0.75 < TW/ye < 1.0 ²⁵ Co = 3 if 1.0 < TW/ye ²⁶ Co = 3 if 1.0 < TW/ye ²⁶ Co = 3 if 1.0 < TW/ye ²⁷ TW/ye = 2.358974 ²⁸ TW/ye = 2.3588 ²⁸ TW/ye = 30 ft ²⁸ TW/ye = 10 ft ²⁸ TW/ye = 0.74 ²⁸ TW/ye = 0.3588 ²⁹ Compute equivalent circular diameter, De, for brink area ²⁰ A = 0.3588 ²⁹ Compute equivalent circular diameter, De, for brink area ²⁹ TW/ye = 2.64 specific gravity of rock ²⁹ TW/ye = 0.68 ²⁹ Z/y/ye = 2.64 specific gravity of rock ²⁹ Z/ye = 15 ²⁹ Z/ye = 15 ²⁹ Z/ye = 15 ²⁹ Z/ye								1				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Get tailwat	er paramet	er Co [.]				•		APPON	CHANNEL	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•		75	v	-= v -					
25 Co = 3 if 1.0 < TW/ye 26 W/ye = 2.358974 27 TW/ye = 2.358974 28 D50 = 0.16 ft D50 of riprap 3 uge 1 2 mass 1 ange 1 10 mass Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 32 D50/ye = 0.410256 >= 0.1 OK 33 g = 3.2.2 ft/s2 Scourd epth 34 hs/ye = 0.916717 Scourd epth 35 hs = 0.35752 ft scourd epth 40 Lsmin = 3Wo = 30 ft Lissipator Pool Length 41 La = 10 ft Apron Length Apron Length 44 La = 10 ft Apron Length 45 Wb = 10 ft Apron Length 46 A = 0.3588 Dec O.68 52 Scource for downstream riprap due to TW/ye >0.74 Dec D_{30} = \frac{0.692}{S-1} (\frac{V^2}{2g})							0 72		TOP OF RIPRAP	7		
28 TW/ye = 2.358974 Image: 1.3 max 28 D50 = 0.16 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 32 D50/ye = 0.410256 >= 0.1 OK OK 33 g = 32.2 ft/s2 sh/s/pe = 0.916717 34 hs/pe = 0.916717 scourd epth 35 hs/D50 = 2.234498 >= 2.0 OK OK 37 33 3) Size the basin 3.58 ft Dissipator Pool Length 41 Ls = 10° hs = 3.58 ft Total Pool Length 4.44 42 Lbmin = 4Wo = 40 ft 4.44 4.44 Lom ft A pron Length 45 Wb = 10 ft maintaining channel bottom depth 4.7 4) Assess need for downstream riprap due to TW/ye >0.74 4.8 49 Compute equivalent circular diameter, De, for brink area $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 5.5 55 L/De L (ft) 10.3, VI (ft/s) D50 (ft) $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 5.6 56 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, ye</td> <td>66555</td> <td>W</td> <td></td> <td></td> <td>ñ l</td>							, ye	66555	W			ñ l
27 TW/ye = 2.358974 1 solver 1			0		•	-	- Carlos	Son -	Ť.	<u>485555</u>		
28 D50 = 0.16 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 30 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. D50/ye = 0.410256 >= 0.1 OK 32 D50/ye = 0.410256 >= 0.1 OK Siger 1.24 max 33 g = 32.2 ft/s2 Siger 1.24 max Figure 10.1. Profile of Riprap Basin 33 g = 0.410256 >= 0.1 OK OK 34 hs/ye = 0.916717 Siger 1.24 max Siger 1.24 max 35 hs = 0.35752 ft scour depth Siger 1.24 max 36 a.32 2.24 ks2 OK Siger 1.24 max Siger 1.24 max 37 38 3) Size the basin Siger 1.24 max Siger 1.24 max Siger 1.24 max 40 Lsmin = 300 ft Total Pool Length Siger 1.24 max Siger 1.24 max 41 La = 10 ft Apron Length Ager 1.24 max Ager 1.24 max 41 La = 10 ft maintaining channel bottom depth Ager 1.24 max Ager 1.24 max 41 La = 0.68 Siger 2.64 specific gravity of rock Ager		TW/ve =	2 358974				7	Partie	272 CC			7:17
23 D50 = 0.16 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. OK 33 g = 32.2 ft/s2 34 hs/ye = 0.916717 35 hs = 0.35752 ft 36 3) Size the basin 38 3) Size the basin 39 Ls = 10*hs = 38 3) Size the basin 39 Ls = 10*hs = 44 Lb = 15hs = 536 ft Total Pool Length 44 La = 10 ft 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area 51 De = 0.68 52 S 2.64 specific gravity of rock 55 10 0.43 3.776 56 L/De L (ft) 10.31 57 14.79513 10 0			100001				3 150 01 2	4 max	1 2d ₅₀ er 1.5d	mas		
30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. 32 D50/ye = 0.410256 >= 0.1 OK 33 g = 32.2 ft/s2 34 hs/ye = 0.916717 35 hs = 0.35752 ft scour depth 36 hs/D50 = 2.234498 >= 2.0 OK 37 38 3) Size the basin 39 Ls = 10°hs = 3.58 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 41 42 Lb = 15hs = 5.36 ft Total Pool Length 43 tbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 A = 0.3588 Ompute equivalent circular diameter, De, for brink area 51 De = 0.68 De = 0.68 52 S S = 2.64 specific gravity of rock 53 Rock size for riprap after energy dissipators Equation 10.6 D ₃₀ = $\frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) VI/Vo (Fig. 10.3) VI (ft/s) D50 (ft) 56 L/De L (ft) 0.4 3.776<		D50 =	0.16	ft	D50 of ripr	ap 📖						
31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. 32 D50/ye = 0.410256 >= 0.1 OK 33 g = 32.2 ft/s2 34 hs/ye = 0.916717 35 hs = 0.35752 ft scour depth 36 hs/D50 = 2.234498 >= 2.0 OK 37 38 39 Ls = 10*hs = 3.58 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 Lb = 15hs = 5.36 ft Total Pool Length 42 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 47 Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 Compute equivalent circular diameter, De, for brink area 52 S = 2.64 specific gravity of rock 53 Rock size for riprap after energy dissipators Equation 10.6 54 S = 2.64 specific gravity of rock 55 - 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 0.4 3.776 0.09 0.09<						e.b		Figu	ire 10.1. Profile	of Riprap Basin	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Check to s	ee that hs/[) 50 >= 2 and	that D50/v	e >= 0.1.						
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$												
34 hs/ye = 0.916717 35 hs = 0.35752 ft scour depth 36 hs/D50 = 2.234498 >=2.0 OK 37 38 3) Size the basin		-										
35 hs = 0.35752 ft scour depth 36 hs/D50 = 2.234498 >=2.0 OK 37 38 3) Size the basin 39 Ls = 10*hs = 3.58 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 441 441 441 441 442 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft Apron Length 444 La = 10 ft Apron Length 44 La = 10 ft Apron Length 444 444 La = 10 ft Apron Length 44 La = 10 ft Apron Length 447 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A = \frac{\pi D_c^2}{4} = y_o W_o$ $A = \frac{\pi D_c^2}{4} = y_o W_o$ 50 A = 0.3588 $D_{50} = \frac{0.692}{5} \left(\frac{V^2}{2g} \right)$ $D_{50} = \frac{0.592}{5} \left(\frac{V^2}{2g} \right)$ $D_{50} = \frac{0.592}{5} \left(\frac{V^2}{2g} \right)$ $D_{50} = \frac{0.592}{5} \left(\frac{V^2}{2g} \right)$ $A = \frac{0.3588}{5} = \frac{0.4}{5} = \frac{0.3776}{5} = \frac{0.098}{5}$												
36 hs/D50 = 2.234498 >= 2.0 OK 37 3) Size the basin 33 3) Size the basin 38 1) Size the basin 30 ft 40 Lsmin = 3Wo = 30 ft 41 42 Lb = 15hs = 5.36 ft Total Pool Length 42 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 4 Assess need for downstream riprap due to TW/ye >0.74 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 A = 0.3588 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 53 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 56 L/De L (ft) 10.3 VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 <td></td> <td></td> <td></td> <td>ft</td> <td>scour dept</td> <td>h</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				ft	scour dept	h						
37 38 3) Size the basin 39 Ls = 10*hs = 3.58 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 42 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 A = 0.3588 51 De = 0.68 52 53 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 56 L/De L (ft) VI/Vo (Fig. D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 9 59 25.15172 17 0.38 3.5872												
38 3) Size the basin 39 Ls = 10*hs = 3.58 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 10 11 11 11 42 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 11 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 44 48 Using Figure 10.3 Image: Compute equivalent circular diameter, De, for brink area Image: Compute equivalent circular diameter, De, for brink area Image: Compute equivalent circular diameter, De, for brink area Image: Compute equivalent circular display to rock Image: Compute equivalent circular display to rock Image: Compute equivalent energy dissipators Equation 10.6 Image: Compute equivale												
39Ls =10*hs =3.58 ftDissipator Pool Length40Lsmin =3Wo =30 ft41414242Lb =15hs =5.36 ftTotal Pool Length43Lbmin =4Wo =40 ft44La =10 ftApron Length45Wb =10 ftmaintaining channel bottom depth46474) Assess need for downstream riprap due to TW/ye >0.7448Using Figure 10.3Compute equivalent circular diameter, De, for brink area50A =0.358851De =0.685253Rock size for riprap after energy dissipators Equation 10.654S =2.64 specific gravity of rock5514.79513100.425822.19269150.45925.15172170.385925.15172170.385925.15172170.385043.7760.095925.15172170.385950100.425950100.485950170.385950170.385950170.385050170.3851500.43.77652170.383.587253100.4254501755171756185714 <td></td> <td>3) Size the</td> <td>basin</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3) Size the	basin									
40 Lsmin = 3Wo = 30 ft 41 42 Lb = 15hs = 5.36 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft Apron Length 43 La = 10 ft Apron Length 44 La = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 $A = \frac{\pi D_e^2}{4} = y_o W_o$ 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 A = 0.3588 $De =$ 0.68 51 De = 0.68 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 9 9 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.				3.58	ft	Dissipate	or Poo	l Lenath	1			
4142Lb =15hs =5.36 ftTotal Pool Length43Lbmin =4Wo =40 ft44La =10 ftApron Length45Wb =10 ftmaintaining channel bottom depth46474) Assess need for downstream riprap due to TW/ye >0.7448Using Figure 10.3 $A = 0.3588$ 49Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50A =0.358851De =0.6852S $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56L/DeL (ft)10.3)5714.79513100.425822.19269150.45925.15172170.3851De and the figure figu			3Wo =					0				
42 43 Lb =15hs =5.36 ftTotal Pool Length43 44 44 45Lbmin =4Wo =40 ft44 45 46 46 47 49La =10 ftApron Length46 47 49Wb =10 ftmaintaining channel bottom depth48 49 50 51 51 52Compute equivalent circular diameter, De, for brink area A = $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 52 53 56De =0.68 0.6852 55De =0.68 0.6853 56 56L/De L (ft)VI/Vo (Fig. 10.3)D50 (ft) 3.776D50 (ft) 0.0959 59 59100.43.7760.09 0.08Riprap placement required for 17 ft from brink.			-									
43 44 44 45Lbmin = 4Wo =40 ft Apron Length44 45 46 47 40La =10 ft maintaining channel bottom depth46 47 41 41 42 42Assess need for downstream riprap due to TW/ye >0.74 48 49 49 49 		Lb =	15hs =	5.36	ft	Total Po	ol Len	qth				
44 45 46 46 47 47 49La =10 ftApron Length maintaining channel bottom depth46 47 49 494) Assess need for downstream riprap due to TW/ye >0.74 Using Figure 10.3 Compute equivalent circular diameter, De, for brink area 50 A = $A = 0.3588$ 51 52 53 54 55De =0.6852 53 54S =2.64 specific gravity of rock56 56L/De 57L (ft)10.3) 1056 57L/De 14.79513VI (ft/s) 10D50 (ft)57 59 5925.15172170.383.587260 5925.15172170.383.58720.08Riprap placement required for 17 ft from brink.								-				
45 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 49 49 Compute equivalent circular diameter, De, for brink area 50 A = 0.3588 51 52 53 53 54 55 53 54 55 54 55 56 L/De L/De L (ft) 10.3 VI (ft/s) 56 L/De L/De L (ft) 10 0.42 39 0.50 (ft) 57 14.79513 10 0.42 30 0.4 30 3.5872 0.08						gth						
46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area 50 A = 51 De = 52 0.68 53 Rock size for riprap after energy dissipators Equation 10.6 54 S = 55 VI/Vo (Fig. 56 L/De 57 14.79513 58 22.19269 58 22.19269 59 25.15172 59 25.15172 59 0.48 59 25.15172 59 0.88 59 0.15 50 0.4 51 0.4 52 0.08 53 0.10 54 0.10 55 0.4 56 L/De 57 14.79513 58 0.4 59 25.15172 50 0.4 50 0.10 50 0.10 <						0	l bottor	m depth				
47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area 50 A = 0.3588 51 De = 0.68 52 S 53 Rock size for riprap after energy dissipators Equation 10.6 54 S = 2.64 specific gravity of rock 55 VI/Vo (Fig. 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.						,						
48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area 50 A = 0.3588 51 De = 0.68 52 S Compute equivalent circular diameter, De, for brink area 53 Rock size for riprap after energy dissipators Equation 10.6 $M = \frac{\pi D_e^2}{4} = y_o W_o$ 53 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 54 S = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 Riprap placement required for 17 ft from brink.		4) Assess	need for do	wnstream ribi	ap due to	TW/ye >C	.74					
49 Compute equivalent circular diameter, De, for brink area $A = \frac{nD_e}{4} = y_o W_o$ 50 A = 0.3588 51 De = 0.68 52 S 53 Rock size for riprap after energy dissipators Equation 10.6 54 S = 2.64 specific gravity of rock 55 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 56 L/De L/De L (ft) 10 0.42 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08								-n ²				
50 A = 0.3588 4 51 De = 0.68 52 Book size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.				ircular diamet	er, De. for	brink area	al∕	$1 = \frac{\pi D_e^2}{2}$	-=vW			
51 De = 0.68 52 Rock size for riprap after energy dissipators Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 S = 2.64 specific gravity of rock 55 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 Riprap placement required for 17 ft from brink.					,,			4	0.00			
52 53 54Rock size for riprap after energy dissipators Equation 10.6 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56L/DeL (ft)10.3)VI (ft/s)D50 (ft)5714.79513100.423.96480.105822.19269150.43.7760.095925.15172170.383.58720.08Riprap placement required for 17 ft from brink.												
53 Rock size for riprap after energy dissipators Equation 10.6 54 S = 2.64 specific gravity of rock 55 VI/Vo (Fig. 56 L/De L (ft) 57 14.79513 10 0.42 58 22.19269 15 0.4 3.776 59 25.15172 17 0.38 3.5872 0.08							г					
54 S = 2.64 specific gravity of rock $D_{50} = \frac{1}{S-1} \left(\frac{1}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.		Rock size f	or riprap af	ter energy dis	sipators Ed	juation 1	0.6	р ($0.692 (V^2)$			
55 3 - 1 (2g) 56 L/De L (ft) 57 14.79513 10 0.42 58 22.19269 15 0.4 59 25.15172 17 0.38 3.9648 0.09 0.09 59 25.15172 17						•		$D_{50} = -$	$\frac{1}{S-1}$			
56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.				. 3					5 - 1 (2g	<u> </u>		
56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.				VI/Vo (Fia.								
57 14.79513 10 0.42 3.9648 0.10 58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.	56	L/De	L (ft)		VI (ft/s)	D50 (ft)					
58 22.19269 15 0.4 3.776 0.09 59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.												
59 25.15172 17 0.38 3.5872 0.08 Riprap placement required for 17 ft from brink.												
								Rip	ap placem	ent reauired	l for 17 ft fi	rom brink.

Cholla Ash Monofill Riprap Sizing and Hydraulic Jump Onsite Channel SEC-7 Drop Structure


					nannel SEC-		ucture			
	A	В	С	D	E	F	G	Н		J
61	Hydraulic	Jump						•		•
62	From Drair	nage Desigr	n Manual for	Maricopa (County, Hydr	aulics: Hyd	raulic Struc	ctures, 2003		
63	Y1 =	0.39	ft	upstream	normal dept	h for drop				
64	Ydn =	0.92	ft		am normal					
65	Q =	40	cfs		gh the drop	•				
66	g =	32.2	ft/s2		•					
	A1 =	4.24		area of flo	w through th	ne drop				
68	A2 =	11.34			w in next se					
69	z =	2.5	ft	sideslope	H:1	[•		Ď	
70	b =	10	ft	bottom wi	dth of chann	el v.	Ф ^	@ v1 v		2
71						1	155			$\overline{V_2}$ TW $\overline{V_2}$
72	2) Calculat	e sequant h	eight of jum	p.		<u>•</u>	X	$\sim \sqrt{2}$ $+$ $\frac{1}{2}$	12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	·····
	Equation 7					1	I FL-	(î)	(T) (5
74	-		V (1.002			V1	~	TT VI	ľ	Í T
75		$I_{2}^{r} = -\frac{1}{2}$	Y_{1} $(1 + 8F_{r1}^{2})$) 1		y.,		>		
76		2	L			. 1		∇_2 TW 1		$\overline{V_2}$
	Y2 =	1.36	ft	OK	height of ju	mp	¥	t		.
78								ulic Jump Types Sloping	Channels (Bradley,	1961:
79	3) Another	check on se	equant heigh	nt of jump.			,		,-	,
	Use Fig. 7-									
81	F		V=	9.43	ft/s					
82	Fr1 =	V	top width =	11.93	ft					
83	-	Jov	ym =	0.36	i ft	= flow are	a / top widtl	h		
84	Ľ	$\sqrt{S} f_m$	Fr1 =	2.79	l					
85										
	J = Y2 / Y1			t = b/(zy1)						
	J =	3.4		t =	10.26					
	Y2 =	1.326	ft	use larger	of Y2 for ma	ax height of	jump			
89										
			eginning loc	ation of jun	np.					
	Equation 7	$^{.3}$ $\boxed{7}$	$7^3 TY^2$	0 77	hY^2	0				
92			$\frac{Y_{1}^{3}}{2} + \frac{ZY_{1}^{2}}{2} + \frac{ZY_{1}^{2}}{2}$	$\frac{Q}{d} = \frac{21}{2}$	$\frac{y_{b}^{3}}{b} + \frac{bY_{b}^{2}}{3} + \frac{bY_{b}}{3}$	<u><u> </u></u>				
93		3	2	$gA_1 = 3$	3	gA_b				
94	1	0 500	D	0.500	(D)					
	Leq =	0.533						sides equal)		
	Yb =	0.34	п	OK	depth at be	ginning jun	np location			
97	1) Coloulat	o longth of t								
		e length of j	ump.							
	Use Fig. 7-									
100	Lj / y1 =	41 15 00 -	ft	- jump los	ath					
101	с ј —	15.99	11	= jump len	gui					
102	Thoroford	Min Long	th of jump =	20	ft					
103	neleiüle		h of apron =		ft					
104			h of basin =		ft					
105			lired riprap=			(from brink	of drop)			
		ngur or requ	area npiap≞	17						


			Riprap S	Cholla Ash N Sloping Drop S Sizing and Hydrai	Structure	ulas				
	A	В	C		E	F	G	Н	1	
1	Riprap Basin Sizing					•	V	II	• •	
2										
	Q=	80	cfs	flow rate for s	ection 6 just be	fore brink of drop				
	Vallow=	4.39	ft/s		ection 5, past dro					
	TW=	1.36	ft							
6	Wo=	10	ft	channel botto	for section 5, pa	asturop				
7	VV0-	10	11	channel bollo	n w					
	From EUN/A Undrouti	c Design of Energy Dissipators for Culverts and Channels,	h.h. 0000							
9	1) Cot inticl volgaity ()	(a) depth (va), and Erouda Number (Er) for briely and Channels,	July 2006							
10	() Get initial velocity ()	/o), depth (yo), and Froude Number (Fr) for brink condition	IS							
	From Flowmanter and									
	From Flowmaster out		~		_					
	yo= ye=	0.58	ft	normal depth						
	Vo=	12.05	ft/s	velocity for dro						
14	Fr=	2.96		Froude numbe	er for drop					
15										
	Select trial D50 and	l obtain hs/ye from Equation 10.1.		F						
17	_	$()^{-0.55}$								
	Equation 10.1 h_s	$= 0.86 \left(\frac{D_{50}}{N}\right)^{-0.55} \left(\frac{V_o}{\sqrt{N}}\right) - C_o$				DISSIPATOR POOL	APRON	CHANNEL		
19	y_e	$\left(\begin{array}{c} y_e \end{array}\right) \left(\begin{array}{c} \sqrt{gy_e} \end{array}\right) \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$			y _o =y _e	LS	LA			
20					F	TOP OF RIPRAP				
21					Ye Ye	TAN THE REAL PROPERTY OF THE P	<u> </u>			
22	Get tailwater parameter	er Co:			- ARCO-		10000000000000000000000000000000000000	V _B		
	Co =	1.4	if TW/ye < 0	.75			ST TET	STREET.		
	Co =	=4*B5/B12-1.6	if 0.75 < TW	//ye < 1.0	3 d ₅₀ or 2 d _{max}	t 2d 50 or 1.5	d _{max}	4		
25	Co =	3	if 1.0 < TW/							
26				,	-	Figure 10.1. Profile	e of Ripran Basin			
27	TW/ye =	=B5/B12				i igure to ti ti tota	e of Ripidp Basin			
28										
29	D50 =	0.25	ft	D50 of riprap						
30										
31	Check to see that hs/E	050 >= 2 and that D50/ye >= 0.1.								
32	D50/ye =	=B29/B12	>= 0.1	OK						
33	g =	32.2	ft/s2							
34	g = hs/ye =	=0.86*((B32)^(-0.55))*(B14)-B25								
35	hs =	=B34*B12	ft	scour depth						
36	hs/D50 =	=B35/B29	>=2.0	OK						1
37										
	3) Size the basin									
39		10*hs =	=10*B35	ft	Dissipator F	Pool Length				
	Lsmin =	3Wo =	=3*B6	ft	Dissipator 1	con Longun				
41										
42	Lb =	15hs =	=15*B35	ft	Total Pool L	enath				
	Lbmin =	4Wo =	=10 B33 =4*B6	ft		longun				
44		=C43-C40	-4 80 ft	Apron Length						
		10	ft		annal hattam	anth				
46			11	maintaining ch	annel bottom de	shui				
	1) Assess need for do	wnstream riprap due to TW/ye >0.74 (for Drop Structures	in channel	ah <i>u</i>)						
	Using Figure 10.3			пу)						
		rcular diameter, De, for brink area $A = \frac{\pi D_e^2}{4}$								
		=B5*B12 $A = \frac{A}{4}$	$Y = Y_o W_o$							
50 51	¬ − ⊃o −	B0 B12 4								
	Je –	=(B50*4/PI())^0.5								
52	Dook olas fas danas f					0 600 (77)	2			
53	Rock size for riprap af				D_{50}	$= \frac{0.692}{V^2}$	_			
54 55	5 =	=165/62.4	spe	cific gravity of roo	ck 50	-S-1 2g	z			
55					L		<u></u>			

· •

Cholla Ash Monofill Sloping Drop Structure

				Riprap Sizi	ing and Hydraulic	Jump Fo	ormulas			
	A	В		С	D	Ē	F		G	
56	L/[De	L (ft)	VI/Vo (Fig. 10.3)	VI (ft/s)	D50 (ft))			
	=B57/\$B\$51	10		.42	=C57*\$B\$13		, 2/(\$B\$54-1))*((D57	'^2)/(2*'Drop Off	-basin'I\$B\$3	3))
	=B58/\$B\$51	15	0	and the second se	=C58*\$B\$13		2/(\$B\$54-1))*((D58			
	=B59/\$B\$51	17			=C59*\$B\$13		2/(\$B\$54-1))*((D59			
	=B60/\$B\$51	20	0.		=C60*\$B\$13		2/(\$B\$54-1))*((D60			
61] (_).().op on	2001110200	-//
62 63		ign Manual for Maricopa County, Hydraulics	s: Hydraulic Structures	s, 2003						
	Y1 =	0.58	ft		upstream normal	•	•			
	Ydn =	1.36	ft		downstream nor		oth section 5			
	Q =	80	cf		flow through the c	ł				
67		32.2		/s2						
	A1 =	6.64	ft2		area of flow throu					
	A2 =	10.43	ft2		area of flow in ne	xt sectio	n			
70		2.5	ft		sideslope H:1			A		
71	b =	10	ft		bottom width of cl	hannel	Va	1	② _{V1}	$v_{1}^{(1)}$
72							1 miles	1553		Y
	2) Calculate sequan	t height of jump.					• <u>/</u>		$V_2 + \frac{1}{2} \phi/$	<u> </u>
74	Equation 7.2						y ₁ '	⊨L		-
75 76 77		$Y_{2} = \frac{1}{2}Y_{1} \left[\left(1 + 8F_{r1}^{2} \right)^{\frac{1}{2}} - 1 \right]$					Y1			C
76								(5)	¥2 >	\leq
11	No				014		У ₁	12-2-	<u> </u>	1
78 79	Y2 =	=0.5*B64*(((1+8*(D85^2))^0.5)-1)	ft		OK	height		¢	$\overline{V_2}$	
	3) Another check on	sequant height of jump.								
	Use Fig. 7-8							Figure 6.10. Hydraulic	Jump Types Slop	ing C
82			V:		=B66/B68	ft/s				
	$Fr1 = \frac{\nu}{\sqrt{1-1}}$		to		12.9	ft				
84	$\sqrt{gy_m}$			•	=B68/D83		= flow area / top w	ridth		
84 85	L				=D82/SQRT(B67*		•			
86					`	,				
	J = Y2 / Y1			:	t = b/(zy1)					
88		3.5				=B71/(E	370*B64)			
	Y2 = ,	=B88*B64	ft		use larger	height o	of jump			
90										
91		t beginning location of jump.								
92	Equation 7.3	$X_1^3 ZY_1^2 Q ZY_2^3 bY_2^2$								
93		╧᠊᠊┽╺┉┉╧╸┽╺┉┈╴═╶┈┈╴┿╶┈┈╴┿	\underline{Q}				•			
93 94 95		$3 2 gA_1 3 3$	gA_2							
95		-/070*/06442\/2\+/070*/06442\/2\+/070*				D74+D0-				/ - /
96	Leq =	=(B70*(B64^3)/3)+(B70*(B64^2)/2)+(B66					7^2/3)+(B66/(B67*	869))		(Plu
97 98	Yb =	0.44	ft	(ОК	depth at	t jump location			unt
	4) Calculate length c	fiump								
	Use Fig. 7-9	ո յսութ.								
	Lj / y1 =	55								
102	- j / y	=B101*B64	ft	-	- iump longth					
102 103 104 105 106	_j —		11	-	= jump length					
103			Therefore: Min Long	th of jump - 1	20	£4				
104			Therefore: Min. Lengt			ft #				
100				n of apron = *		ft 4				
100			i otal Lengti	n or basin = =	=D105+D104	ft				

g Channels (Bradley, 1961)

(Plug in values for Y2 until both sides equal)

2/13/2009

ON-SITE STORAGE VOLUME CALCULATION

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

Cholla Ash Monofill On-Site Basin Calculation

	Storage	Storage			Total
	Area	Area	Volume *(1)	Volume	Volume
Depth	(sq ft)	(ac)	(cu ft)	(ac-ft)	(ac ft)
0	18,225	0.42	0	0	0
9	35,721	0.82	238,383	5.473	5.5
12	45,369	1.04	121,347	2.786	8.3

Notes: The volume was calculated using the conic equation (V = $h/3 \times (a1 + a2 + (a1 \times a2)^{(1/2)})$

OFF-SITE HYDRAULIC CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofili APP\Channel Design\Report\Draft Drainage Report.doc

OFF-SITE CHANNEL

NORMAL DEPTH CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

Project Description			•	
Friction Method Solve For	Manning Formula Normal Depth			
Input Data				
Roughness Coefficient		0.035		
Channel Slope		0.20000	ft/ft	
Left Side Slope		2.50	ft/ft (H∶V)	
Right Side Slope		2.50	ft/ft (H∶V)	
Bottom Width		10.00	ft	
Discharge		25.00	ft³/s	
Results		fikt i slav Fri fikt		
Normal Depth		0.29	ft	
Flow Area		3.14	ft²	
Wetted Perimeter		11.58	ft	
Top Width		11.46	ft	
Critical Depth		0.55	ft	
Critical Slope	(0.02311	ft/ft	
Velocity		7.96	ft/s	
Velocity Head		0.98	ft	
Specific Energy		1.28	ft	
Froude Number		2.68		
Flow Type	Supercritical			
GVF Input Data		95 L S		
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data		n an tha an Tha Albana		
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Jpstream Velocity		Infinity	ft/s	
Normal Depth		0.29	ft	
Critical Depth		0.55	ft	
Channel Slope	0	.20000	ft/ft	
Critical Slope	0	.02311	ft/ft	

Worksheet for DROP Channel Section 1 (25 cfs-5:1)

2/13/2009 10:27:02 AM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Worksheet for Channel Section 1 (30 cfs - 0.885% Slope)

Project Description			
Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope		0.035 0.00885	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H:V)
Bottom Width		10.00	ft
Discharge		25.00	ft³/s
Results			
Normal Depth		0.73	ft
Flow Area		8.62	ft²
Wetted Perimeter		13.93	ft
Top Width		13.65	ft
Critical Depth		0.55	ft
Critical Slope		0.02311	ft/ft
Velocity		2.90	ft/s
Velocity Head		0.13	ft
Specific Energy		0.86	ft
Froude Number		0.64	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			n - Carl Maria - Carl Maria - Carl
Upstream Depth Profile Description		0.00	ft
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.73	ft
Critical Depth		0.55	ft
Channel Slope		0.00885	ft/ft
Critical Slope		0.02311	ft/ft
		• •	

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2/10/2009 9:30:26 AM

Page 1 of 1

.

Worksheet for Channel Section 2 (80 cfs - 0.104% Slope)

ft/ft ft/ft (H:V) ft/ft (H:V) ft ft ft³/s

ft ft² ft ft ft ft/ft ft/s ft

ft ft

ft

ft ft/s ft/s ft ft ft ft/ft ft/ft

Project Description

	A.A		
Friction Method Solve For	Manning Formula Normal Depth		
301VE F01	Nomai Depti		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.01040	
Left Side Slope		2.50	
Right Side Slope		2.50	
Bottom Width		10.00	
Discharge		80.00	
Results			
Normal Depth		1.35	
Flow Area		17.97	
Wetted Perimeter		17.24	
Top Width		16.73	
Critical Depth		1.14	
Critical Slope		0.01896	
Velocity		4.45	
Velocity Head		0.31	
Specific Energy		1.65	
Froude Number	Curle aniti and	0.76	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	
Length		0.00	
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	
Profile Description			
Profile Headloss		0.00	
Downstream Velocity		Infinity	
Upstream Velocity		Infinity	
Normal Depth		1.35	
Critical Depth		1.14	
Channel Slope	(0.01040	
Critical Slope	(0.01896	

2/10/2009 9:30:31 AM

Worksheet for Channel Section 3 (140 cfs - 0.5% Slope)

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data **Roughness Coefficient** 0.035 Channel Slope 0.00500 ft/ft Left Side Slope 2.50 ft/ft (H:V) **Right Side Slope** 2.50 ft/ft (H:V) Bottom Width 10.00 ft Discharge 140.00 ft³/s Results Normal Depth 2.22 ft Flow Area 34.50 ft² Wetted Perimeter 21.95 ft Top Width 21.10 ft Critical Depth 1.59 ft Critical Slope 0.01739 ft/ft Velocity 4.06 ft/s Velocity Head 0.26 ft Specific Energy 2.48 ft Froude Number 0.56 Flow Type Subcritical **GVF** Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 **GVF** Output Data Upstream Depth 0.00 ft **Profile Description Profile Headloss** 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.22 ft Critical Depth 1.59 ft Channel Slope 0.00500 ft/ft Critical Slope 0.01739 ft/ft

> Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00]

2/16/2009 7:06:53 PM

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 1

Worksheet for Channel Section 4 (140 cfs - 1.0% Slope)

Project Description

Manning Formula	
Normal Depth	
0.03	5
0.0100	0 ft/ft
2.5	0 ft/ft (H:V)
2.5	0 ft/ft (H:V)
10.0	0 ft
150.0	0 ft³/s
1.9	1 ft
28.3	2 ft²
20.3	1 ft
19.5	7 ft
1.6	5 ft
0.0172	1 ft/ft
5.3	0 ft/s
0.4	4 ft
2.3	5 ft
0.7	8
Subcritical	
0.0	D ft
0.0	D ft
)
0.00) ft
0.00) ft
0.01721	ft/ft
	Normal Depth 0.03 0.0100 2.5 2.5 10.0 150.0 1.9 28.3 20.3 1.9 28.3 20.3 19.5 1.6 0.0172 5.3 0.4 2.3 0.7 Subcritical 0.00 0.00 0.00

2/10/2009 9:30:42 AM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1

Worksheet for Channel Section 5 (80 cfs - 1.0% Slope)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
, Roughness Coefficient		0.000	
Channel Slope		0.035	
Left Side Slope		0.01000	
Right Side Slope		2.50	. ,
Bottom Width		2.50	· /
Discharge		10.00 80.00	
Results			
Normal Depth		1.20	4
Flow Area		1.36 18.22	
Wetted Perimeter		18.22	
Top Width		16.80	ft ft
Critical Depth		1.14	ft
Critical Slope		0.01896	ft/ft
Velocity		4.39	ft/s
Velocity Head		0.30	ft
Specific Energy		1.66	ft
Froude Number		0.74	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.36	ft
Critical Depth		1.14	ft
Channel Slope		0.01000	ft/ft
Critical Slope		0.01896	ft/ft

2/11/2009 1:48:05 PM

÷

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster
 [08.01.071.00]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 1

.

Worksheet for DROP STRUCTURE Channel Sec-6 (80 cfs-5:1)

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.035		
Channel Slope	0.20000		
Left Side Slope	2.50		
Right Side Slope	2.50		
Bottom Width	10.00		
Discharge	80.00		
Results			
Normal Depth	0.50		
Flow Area	0.58	ft	
Wetted Perimeter	6.64 13.12	ft²	
Top Width			
Critical Depth	12.90	ft	
Critical Slope	1.14 0.01896	ft	
Velocity	12.05	ft/ft	
Velocity Head	2.26	ft/s ft	
Specific Energy	2.20	ft	
Froude Number	2.96	it.	
Flow Type	Supercritical		
	ouperonneur		
GVF Input Data			
Downstream Depth	0.00	ft	
Length	0.00	ft	
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.00	ft	
Profile Description			
Profile Headloss	0.00	ft	
Downstream Velocity	Infinity	ft/s	
Upstream Velocity	Infinity	ft/s	
Normal Depth	0.58	ft	
Critical Depth	1.14	ft .	
Channel Slope	0.20000	ft/ft	
Critical Slope	0.01896	ft/ft	

2/10/2009 9:31:06 AM

Worksheet for Channel Section 6 (80 cfs - 1.0% Slope)

Project Description

Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient		0.035	
Channel Slope		0.01000	ft/ft
Left Side Slope		2.50	ft/ft (H:V)
Right Side Slope		2.50	ft/ft (H:V)
Bottom Width		10.00	ft
Discharge		80.00	ft³/s
Results			
Normal Depth		1.36	ft
Flow Area		18.22	ft²
Wetted Perimeter		17.32	ft
Top Width		16.80	ft
Critical Depth		1.14	ft
Critical Slope		0.01896	ft/ft
Velocity		4.39	ft/s
Velocity Head		0.30	ft
Specific Energy		1.66	ft
Froude Number		0.74	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		1.36	ft
Critical Depth		1.14	ft
Channel Slope		0.01000	ft/ft
Critical Slope		0.01896	ft/ft

2/10/2009 9:30:52 AM

Worksheet for Channel Section 7 (25 cfs - 0.5% Slope)

Project Description

Friction Method Solve For	Manning Formula Normal Depth		
Input Data			
Roughness Coefficient Channel Slope		0.039	
Left Side Slope		2.50	
Right Side Slope		2.50	
Bottom Width		10.00	
Discharge		25.00	ft³/s
Results			
Normal Depth		0.86	ft
Flow Area		10.43	ft²
Wetted Perimeter		14.62	ft
Top Width		14.29	ft
Critical Depth		0.55	ft
Critical Slope		0.02311	ft/ft
Velocity		2.40	ft/s
Velocity Head		0.09	ft
Specific Energy		0.95	ft
Froude Number		0.49	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth Profile Description		0.00	ft
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.86	ft
Critical Depth		0.55	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.02311	ft/ft

2/10/2009 9:30:57 AM

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley FlowMaster [08.01.071.00] Page 1 of 1

.

OFF-SITE CHANNEL

RIP-RAP SÍZING CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

Cholla Ash Monofill Riprap Size Comparison Offsite Channel Drop Structures

Method											
Offsite Channel	USACE (D30)	ASCE	USBR	USGS	ISBASH	HEC-11	Maricopa Cty	Min	Мах	Chosen Rock Size (D50)	Layer Thickness (ft)
Section 1 (bank)	0.04	0.06	0.11	0.13	0.11	0.02	0.04	0.02	0.13	0.33	1.00
Section 1 (bottom)	0.04	0.06	0.11	0.13	0.11	0.02		0.02	0.13	0.33	1.00
Section 2 (bank)	0.10	0.14	0.26	0.38	0.25	0.05	0.10	0.05	0.38	0.33	1.00
Section 2 (bottom)	0.10	0.14	0.26	0.38	0.25	0.05		0.05	0.38	0.33	1.00
Section 3 (bank)	0.06	0.10	0.20	0.27	0.19	0.03	0.06	0.03	0.27	0.33	1.00
Section 3 (bottom)	0.06	0.10	0.20	0.27	0.19	0.03		0.03	0.27	0.33	1.00
Section 4 (bank)	0.14	0.20	0.38	0.59	0.36	0.09	0.14	0.09	0.59	0.50	1.00
Section 4 (bottom)	0.14	0.20	0.38	0.59	0.36	0.09		0.09	0.59	0.50	1.00
Section 5 (bank)	0.09	0.14	0.26	0.37	0.25	0.05	0.10	0.05	0.37	0.33	1.00
Section 5 (bottom)	0.09	0.04	0.26	0.37	0.25	0.05		0.04	0.37	0.33	1.00
Section 6 (bank)	0.09	0.14	0.26	0.37	0.25	0.05	0.10	0.05	0.37	0.33	1.00
Section 6 (bottom)	0.09	0.04	0.26	0.37	0.25	0.05		0.04	0.37	0.33	1.00
Section 7 (bank)	0.02	0.04	0.07	0.08	0.07	0.01	0.02	0.01	0.08	0.33	1.00
Section 7 (bottom)	0.02	0.04	0.07	0.08	0.07	0.01		0.01	0.08	0.33	1.00
Drop Struc Sec-6-5:1 (bnk)	1.42	1.03	2.06	4.34	1.86	1.03	3.07	1.03	4.34	1.00*	2.00
Drop Struc Sec-6-5:1 (btm)	1.42	0.95	2.06	4.34	1.86	0.77		0.77	4.34	1.00*	2.00
Drop Struc Sec-1-basin (bnk)	0.60	0.45	0.88	1.58	0.81	0.30	1.33	0.30	1.58	1.00*	2.00
Drop Struc Sec-1-basin (btm)	0.60	0.42	0.88	1.58	0.81	0.22		0.22	1.58	1.00*	2.00

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Riprap Sizing\RDS runs_comparison

Cholla Ash Monofill Riprap Calculation

.

By:	
Checked:	

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	and a second of Drainage Deergh Manaal for Maneopa County (Manual)
4	Channel Name: Cholla Ash Offsite Channel section 1 Drop Structure
5	Design Flood Freque 100 -yr
6	Location/Station: 1+50 to 7+50
7	
8	
9	Relevant Equations
10	
11	
12 13	$\int_{a} = 0.001 V_a^3$
14	$d_{50} = \frac{0.001 V_a^3}{d_{avg}^{0.5} K_1^{1.5}}$
15	
16	Γ
17	$K_1 = \left[1 - \frac{\sin^2 \theta}{\sin^2 \theta}\right]^{0.5}$
18	$\sin^2 \phi$
19	Where,
20	d_{50} = Median diameter of the riprap materials, ft
21	V _a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	K ₁ = Bank angle correction factor
24	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
26	
27	
28 29	
30	(Based on output from FlowMaster and based on the Manual)
31	$V_a = 7.96$ ft/s
32	d _{avg} = 0.29 ft
33	$D_{50} = 16$ inch Assume a D_{50} and then calculate if it is stable.
34	$\theta = 21.80$ degree [2.5:1 (H:V)]
35	$\phi = 41.0$ degree From Figure 6.14 of the Manual for rounded riprap - attached.
36	
	Hence.
38	$K_1 = 0.82$
39	$d_{50} = 1.25 \text{ ft}$
40	d_{50} (inch) = 16 inch <d50 16="" =="" inches="" is="" stable.<="" td=""></d50>
41	
42	
43	Therefore, proposed design riprap size $(d_{50}) = 16$ inch

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Riprap Sizing\Riprap_size_ estimates

Page ____ Date:

Cholla Ash Monofill Riprap Calculation

By:_____ Checked:_____

	A	В	С	D	E	F	G	н		J	к
1	Calculat	ion of Ri	orap Size	for Cha	annel Li	inina	I			· •	
2	Calculatio	ns are bas	ed on Drain	age Des	ian Man	ual for	Maricona	County (N	lanual)		
3				0	5			oounty (n	landary		
4	Channel M	lame:	Cholla Ash	Offsite	Channel	sactio	on 1				
5		ood Freque	100		Guanner	36011					
6		Station: 1+		,							
7											
8	l										
9	Relevant I	quations									
10	-										
11											
12	4	- 0.	$.001 V_a^3$								
14	1	$d_{50} = \frac{0}{d}$	$^{0.5}K_{1.5}^{1.5}$								
15	1										
16		Г]							
17		$K_1 = 1$	$\frac{\sin^2 \theta}{\theta}$								
18			$\sin^2 \phi$								
19	Where,			J							
20		d ₅₀ =	Median diar	meter of	the riprap	mater	rials, ft				
21		V _a =	Average ve	locity in t	he main d	channe	el, ft/s				
22		d _{avg} =	Average de								
23		K ₁ =	Bank angle								
24		θ =	Bank angle			ıl, degr	ee				
25		$\phi =$	Riprap mate								
26											
27 28											
28	Input Para										
30	Loasen (II	output from	FlowMaster	and bas	ed on the	e Manu	ial)				
31		V _a =	2.90	ft/s							
32		d _{avg} =	0.73								
33		0 _{avg} D ₅₀ =		nch	Accumo		and there -	alouiate 161	11-1-1		
34		$\theta =$	21.80				ano inen c	alculate if it	is stable.		.
35		$\phi =$		degree	[2.5:1 (H		14 of the M	lanual for r	ounded ripra	n ottook	
36		r 1			- ionri lį	, ar e 0.		anual IOF f	ounded ripra	ah - arracheo	ı.
37	Hence,										
38		K1 =	0.82								
39		d ₅₀ =	0.04 f	ťt							
40		d ₅₀ (inch) =	1 i	nch	<d50< td=""><td>= 6</td><td>inches is s</td><td>table</td><td></td><td></td><td></td></d50<>	= 6	inches is s	table			
41					200	5					
42											
43	Therefo	re, propose	d design ri	orap size	e (d ₅₀) =	6	inch				

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Riprap Sizing\Riprap_size_ estimates

Cholla Ash Monofill² Riprap Calculation

By:__ Checked:

	A	В	С	D	E	F	G	Н		J	К
1	Calculat	ion of Ri	orap Size	for Ch				L	'	5	
2	Calculatio	ns are bas	ed on Drair	age Des	ion Manu	al for	Maricona	County (Ma			
3	Ī			J			manoopu	oounty (me	indaty		
4	Channel N	lame:	Cholla Ast	Offsite	Channel s	ectio	n 2				
5	Design Flo	od Freque	100		onannere	cono					
6	Location/S		8+00 to 11	-							
7											
8											
9	<u>Relevant E</u>	quations									
10											
12											
13		$d_{1} = \frac{0}{2}$.0011/3								
14		$d_{50} = \frac{0}{d}$	$\frac{0.5}{avg}K_{1}^{1.5}$								
15											
16		ſ		5							
17		$K_1 = 1$	$-\frac{\sin^2\theta}{1-2}$								
18	14/1		$\sin^{\circ}\phi$								
19 20	Where,	d ₅₀ =	Median dia	meter of	the riprop	notor	iolo ft				
20		$V_a =$	Average ve								
22		d _{avg} =	Average de								
23		K ₁ =	Bank angle				annei, it				
24		θ =	Bank angle			door	00				
25		φ =	Riprap mate								
26		1			5 pe	00, a.	9.00				
27											
	Input Para		-								
29 30	(based on (output from	FlowMaster	r and bas	ed on the	Manu	al)				
31		V _a =	4.45	ft/s							
32		d _{avg} =	1.35								
33		D ₅₀ =		inch	Assume a	Den P	and then ca	alculate if it i	s stable		
34		$\theta =$		degree	[2.5:1 (H:)						
35		φ =	41.0	degree			14 of the N	lanual for ro	unded ripra	n - attacher	4
36					-						
	Hence,										
38		K ₁ =	0.82								
39		d ₅₀ =	0.10								
40		d ₅₀ (inch) =	2 1	inch	<d50 =<="" th=""><th>= 6 i</th><th>nches is st</th><th>able.</th><th></th><th></th><th></th></d50>	= 6 i	nches is st	able.			
41											
42 43	Thorofor		• ما ما م ما ا								
43	ineretor	e, propose	d design ri	prap siz	e (d ₅₀) =	6 i	nch				

By:_____ Checked:_____

	A	В	СТ	D	E	F	G	Н		J	К
1	Calculat	on of Ri	orap Size						L	5	<u> </u>
2			ed on Drain				Maricona	County (M	(leura		
3	1				ign mana		maneopa	oounty (ma	anuarj		
4	Channel N	ame:	Cholla Ash		Channel e	octio	n 3				
5	Design Flo				onamera	ectio	11.5				
6	Location/S		11+50 to 1	-							
7]										
8											
9	Relevant E	quations									
10											
11											
12 13		0	$.001 V_a^3$								
14		$d_{50} = \frac{0}{d}$	$^{0.5}K^{1.5}$								
15		L	avg								
16		Г"		7							
17]	$K_1 = 1$	$-\frac{\sin^2\theta}{\theta}$								
18			$\sin^2 \phi$								
	Where,	L		-1							
20	4	d ₅₀ =	Median dia								
21	•	∨ _a =	Average ve	locity in t	he main ch	nanne	el, ft/s				
22		d _{avg} =	Average de	pth of flo	w in the m	ain cł	nannel, ft				
23		K1 =	Bank angle	correctio	on factor						
24		θ =	Bank angle	with the	horizontal,	degr	ee				
25		ϕ =	Riprap mate	erial's an	gle of repo	se, d	egree				
26											
	Input Para	metore									
29	(Based on	output from	FlowMaster	r and has	ed on the	Мари					
30						vianu	(a)				
31		V _a =	3.85	ft/s							
32		d _{avg} =	1.85								
33		D ₅₀ =		inch	Assume a		and then ca	alculate if it	is stable		
34		$\theta =$		degree	[2.5:1 (H:)						
35		φ =		degree			14 of the N	lanual for ro	unded ripra	n - attache	4
36				-						.1	
	Hence,										
38		K ₁ =	0.82								
39		d ₅₀ =	0.06	ft							
40		d ₅₀ (inch) =	1 i	inch	<d50 =<="" th=""><th>= 6 i</th><th>inches is st</th><th>table.</th><th></th><th></th><th></th></d50>	= 6 i	inches is st	table.			
41											
42						_					
43		e, propose	ed design ri	prap siz	e (d ₅₀) =	6	inch				

Page _____ Date:

By:_ Checked:

	A	В	С	D	E	T FT	G	<u> </u>	T	1	J		
1	Calcula	tion of Ri	prap Size					L	I	I			ĸ
2	Calculati	ons are bas	sed on Drain	age Des	ian Manuz	al for	Maricona	Count	v (Ma	nual)			
3]			J	<u>.</u>			Jount	y (ma	nuarj			
4	Channel	Name:	Cholla Ash	Offsite	Channel s	ectio	n 4						
5	Design F	lood Frequ	e 100			001101							
6	Location		13+75 to 2										
7													
8	Balavant	F											
	Relevant	Equations											
10													
12			0011/3										
13		$d_{50} = \frac{0}{a}$	1.001V										
14]	, C	$l_{mg}^{0.5}K_1^{1.5}$										
15		·····		_									
16		ſ	$-\frac{\sin^2\theta}{\cos^2\theta}$										
17		$K_{\perp} = 1$	$-\frac{\sin^2 \phi}{\sin^2 \phi}$										
18	Where,		$\sin \varphi$										
20	where,	d ₅₀ =	Median diar	meter of	the rinran r	natari	ale ft						
21		$V_a =$	Average ve										
22		d _{avg} =	Average de										
23		K1 =	Bank angle										
24		θ =	Bank angle			deare	e						
25		ϕ =	Riprap mate	erial's an	gle of repo	se, de	gree						
26													
27 28	Innut Day												
	Input Para (Based on		FloutAcotor										
30	120360 011	output non	n FlowMaster	ano pas	eu on the l	vianua	ai)						
31		V _a =	5.30	ft/s									
32		d _{avg} =	1.91										
33		D ₅₀ =	6 i	nch	Assume a	D ₅₀ a	nd then ca	alculate	e if it is	stable			
34		θ =	21.80		[2.5:1 (H:\					20010.			
35		$\phi =$					4 of the M	lanual f	for rou	nded rin	rap - attacl	ned.	
36	11				,						,		
	Hence,	12											
38		K ₁ =	0.82										
39		d ₅₀ =	0.14 f										
40		d ₅₀ (inch) =	2 i	nch	<d50 =<="" th=""><th>6 ir</th><th>iches is st</th><th>able.</th><th></th><th></th><th></th><th></th><th></th></d50>	6 ir	iches is st	able.					
41 42													
42	Thorofo		od dogtan. t	·									
43	Inereto	re, propose	ed design rij	orap size	e (d ₅₀) =	6 ir	nch						

Page ____ Date:

Cholla Ash Monofill Riprap Calculation

By:_____ Checked:_____

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash Offsite Channel section 5
	Design Flood Freque 100 -yr
	Location/Station: 23+50 to 32+50
7	
8	Delevent Envirt
	Relevant Equations
10 11	
12	
13	$d_{in} = \frac{0.001 V_a}{a}$
14	$d_{50} = \frac{0.001 V_a^3}{d_{org}^{0.5} K_1^{1.5}}$
15	
16	$\begin{bmatrix} \kappa & - \begin{bmatrix} 1 & \sin^2 \theta \end{bmatrix}^{0.5} \end{bmatrix}$
17	$ \Lambda_1 = 1 - \frac{1}{2} - \frac{1}{2} $
18	$\left[\sin^2 \phi \right]$
	Where,
20	d ₅₀ = Median diameter of the riprap materials, ft
21	V _a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	K ₁ = Bank angle correction factor
24 25	θ = Bank angle with the horizontal, degree
26	ϕ = Riprap material's angle of repose, degree
27	
	Input Parameters
	(Based on output from FlowMaster and based on the Manual)
30	
31	$V_a = 4.39$ ft/s
32	$d_{avg} = 1.36$ ft
33	$D_{50} = 6$ inch Assume a D_{50} and then calculate if it is stable.
34	$\theta = 21.80$ degree [2.5:1 (H:V)]
35	$\phi = 41.0$ degree From Figure 6.14 of the Manual for rounded riprap - attached.
36	Hanaa
	Hence,
38	$K_1 = 0.82$
39	$d_{50} = 0.10 \text{ ft}$
40	d_{50} (inch) = 2 inch <d50 6="" =="" inches="" is="" stable.<="" th=""></d50>
41	
42	Therefore, proposed deging righter airs (d.) =
43	Therefore, proposed design riprap size (d ₅₀) = 6 inch

Page _____ Date:

Cholla Ash Monofill Riprap Calculation

By:_____ Checked:_____

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash Offsite Channel section 6
5	Design Flood Freque 100 -yr
6	Location/Station: 33+00 to 35+00
7	
8	
	Relevant Equations
10	
11 12	
13	$d = \frac{0.001 V_a^3}{a}$
14	$d_{50} = \frac{0.001 V_a^3}{d_{aig}^{0.5} K_1^{1.5}}$
15	
16	$ [\kappa - \left[1 + \sin^2 \theta \right]^{0.5}] $
17	$ K_1 = \left 1 - \frac{\sin \theta}{2}\right $
18	$\begin{bmatrix} \sin^2 \phi \end{bmatrix}$
	Where,
20	d_{50} = Median diameter of the riprap materials, ft
21	V_a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	$K_1 =$ Bank angle correction factor
24 25	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
27	
	Input Parameters
29	(Based on output from FlowMaster and based on the Manual)
30	
31	$V_a = 4.39$ ft/s
32	$d_{avg} = 1.36$ ft
33	$D_{50} = 6$ inch Assume a D_{50} and then calculate if it is stable.
34	θ = 21.80 degree [2.5:1 (H:V)]
35	ϕ = 41.0 degree From Figure 6.14 of the Manual for rounded riprap - attached.
36 37	
	Hence, $K_1 = 0.82$
38	
39	$d_{50} = 0.10 \text{ ft}$
40	d_{50} (inch) = 2 inch <d50 6="" =="" inches="" is="" stable.<="" th=""></d50>
41	
43	Therefore proposed design single (1)
	Therefore, proposed design riprap size $(d_{50}) = 6$ inch

Cholla Ash Monofill Riprap Calculation

.

By:_____ Checked:_____

	A B C D E F G H I J K
1	Calculation of Riprap Size for Channel Lining
2	Calculations are based on Drainage Design Manual for Maricopa County (Manual)
3	
4	Channel Name: Cholla Ash Offsite Drop Structure section 6
	Design Flood Freque 100 -yr
	Location/Station: 32+50 to 33+00
7	
	Relevant Equations
10	
11	
12	$0.001V^{3}$
13	$d_{50} = \frac{0.001 V_a^3}{d_{arg}^{0.5} K_1^{1.5}}$
14	$\mathcal{A}_{avg} \mathbf{X}_{1}$
15 16	
17	$\left \mathcal{K}_{1} = \left[1 - \frac{\sin^{2} \theta}{\sqrt{2}} \right]^{0.5} \right $
18	$\left \Lambda_{1} = \left 1 - \frac{1}{\sin^{2} \phi} \right $
19	Where,
20	d ₅₀ = Median diameter of the riprap materials, ft
21	V _a = Average velocity in the main channel, ft/s
22	d _{avg} = Average depth of flow in the main channel, ft
23	K ₁ = Bank angle correction factor
24	θ = Bank angle with the horizontal, degree
25	ϕ = Riprap material's angle of repose, degree
26 27	
	Input Parameters
29	(Based on output from FlowMaster and based on the Manual)
30	
31	$V_a = 12.05 \text{ ft/s}$
32	$d_{avg} = 0.58$ ft
33	$D_{50} = 37$ inch Assume a D_{50} and then calculate if it is stable.
34	$\theta = 21.80$ degree [2.5:1 (H:V)]
35 36	ϕ = 41.0 degree From Figure 6.14 of the Manual for rounded riprap - attached.
	Hence,
38	$K_1 = 0.82$
39	$d_{50} = 3.07 \text{ ft}$
40	d_{50} (inch) = 37 inch <d50 37="" =="" inches="" is="" stable.<="" td=""></d50>
41	
42	
43	Therefore, proposed design riprap size $(d_{50}) = 37$ inch

.

····	A	В	С	D	E	F	G	Н	······	J	К
1	Calculat	ion of Ri	orap Size	for Ch		ining	<u> </u>	L		L	
2	Calculatio	ns are bas	ed on Drair	nage Des	sign Man	ual for I	Maricopa	County (Ma	anual)		
3				5	5						
4	Channel N	lame:	Cholla Asl	n Offsite	Channel	section	ו 7				
5	Design Flo	od Freque									
6	Location/S	Station:	35+00 to 3	8+50							
7											
8 9	Dolouget D										
	Relevant E	quations									
10											
12		0	0011/3								
13		$d_{50} = \frac{0}{a}$	$\frac{10.5}{K^{1.5}}$								
14		, " a	$\begin{bmatrix} a_{0,0} \\ a_{0,0} \end{bmatrix} K_1^{(1,0)}$								
15											
16			$\sin^2 \theta$	5							
17 18		$K_1 = 1$	$-\frac{\sin^2 \phi}{\sin^2 \phi}$								
	Where,	L									
20		d ₅₀ =	Median dia	imeter of	the ripra	o materia	als ft				
21		V _a =	Average ve								
22		d _{avg} =	Average de								
23		K1 =	Bank angle				annoi, n				
24		θ =	Bank angle			al deore	e				
25		φ =	Riprap mat								
26		,			0		5				
27											
	Input Para										
29 30	(Based on	output from	I FlowMaste	er and bas	sed on th	e Manua	al)				
31		V _a =	2.40	ft/c							
32		d _{avg} =	0.86								
33		D ₅₀ =		inch	Accum		nd than a	olouloto if it i	ia atabla		
33		$\theta =$		degree	[2.5:1 (H		nu men c	alculate if it i	is stable.		
35		$\phi =$		degree			4 of the N	Anual for ro	unded ripr	an attacho	Ч
36		Ψ		409.00		guie 0.1	4 OF LICE N		unded ripi	ap - allache	u.
37	Hence,										
38		K ₁ =	0.82								
39		d ₅₀ =	0.02	ft							
40		d ₅₀ (inch) =	: 1	inch	<d5(< th=""><th>) = 6 ir</th><th>nches is s</th><th>table.</th><th></th><th></th><th></th></d5(<>) = 6 ir	nches is s	table.			
41											
42								-			
43	Therefo	re, propos	ed design r	iprap siz	e (d ₅₀) =	6 ii	nch				

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Riprap Sizing\Riprap_size_ estimates

:

Page ____ Date:

.

Drop Structure Offsite Sec-1-basin(0.2%slope) Date: 02/12/2009 Time: 10:02 4 RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * WEST Consultants, Inc. 4. * * * * \star Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ***********

Project: Cholla Ash Offsite Description: Offsite Channel - Section 1 Drop

___ USACE Method _____

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width

Input Parameters:

Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type Trapezoidal Straight N/A 7.96 ft/s N/A N/A 165. lbs/cu ft 1.00 0.29 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.60 ftComputed Local Depth Averaged Velocity7.96 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		1.250 ft
Selected Minimum		0.61 ft
Selected Minimum	D90	0.88 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	67. 34.	169. 50.
	Page 1	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	10	7.96 ft/s 2.50 65. lbs/cu ft Channel Bank
Output Results:		
Computed D50		0.45 ft
*** Using Gradations from CC	DE ETL 1110-2-120 3	* * *
Specific Weight 165.0 lbs/ Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		7.96 ft/s
Output Results:		
Computed D50		0.88 ft
*** Using Gradations from CC)e etl 1110-2-120 *	* * *
Selected Minimum D30 0.	cu ft 00 ft 73 ft 06 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
w100 w50 w15	117. 58. 18.	292. 86. 43.

3

Input Parameters:

Average Channel Velocity

Output Results:

Computed D50

1.58 ft

7.96 ft/s

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	
Layer Thickness		2.750	ft
Selected Minimum	D30	1.34	ft
Selected Minimum	D90	1.94	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	719.	1797.
w50	359.	532.
W15	112.	266.

_____ Isbash Method _____

Input Parameters:

Average Channel Velocity Unit Weight of Stone Turbulence Level 7.96 ft/s 165. lbs/cu ft High

Output Results:

Computed D50

0.81 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu ft
Layer Thickness		1.500 ft
Selected Minimum	D30	0.73 ft
Selected Minimum	D90	1.06 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	117.	292.
w50	58.	86.
W15	18.	43.

_____ Cal B & SP Method _____

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type

7.96 ft/s 10.61 ft/s 165. lbs/cu ft 2.50 Impinging

Output Results:

Computed W

40.71 lbs

** CalTrans A Gradation **

(1) Outside Layer:

Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft

_____ HEC-11 Method _____

Input Parameters:

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose

Dr Riprap Placement Safety Factor	rop Structure Offsite Sec	-1-basin(0.2%slope) Channel Bank 1.1
Output Results:		
Computed D50		0.30 ft
	** FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by	Size Rock Size, ft	Rock Weight, lbs
D100 D50 D10	1.30 0.95 0.40	200. 75. 5.

Drop Structure Offsite Sec-1-basin_btm(0.2%slope) Date: 02/12/2009 Time: 10:02 \star RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * * * * * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 1 DROP btm

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 7.96 ft/s N/A N/A 165. lbs/cu ft 1.00 0.29 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.60 ftComputed Local Depth Averaged Velocity7.96 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		1.250 ft
Selected Minimum		0.61 ft
Selected Minimum	D90	0.88 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	67. 34.	169. 50.
	Page 1	

Drop	Structure	Offsite	Sec-	1-basin <u></u>	_btm(0.	2%slop	be)
			11.			25.	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	165 Cha	7.96 ft/s N/A . lbs/cu ft nnel Bottom
Output Results:		
Computed D50		0.42 ft
*** Using Gradations from C	OE ETL 1110-2-120 **	*
Specific Weight 165.0 lbs Layer Thickness 0. Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		7.96 ft/s
Output Results:		
Computed D50		0.88 ft
*** Using Gradations from CC	DE ETL 1110-2-120 ***	k.
Selected Minimum D30 0.	/cu ft 500 ft .73 ft .06 ft	
Percent Lighter by Weight	Stone Weigh Minimum	nt, lbs Maximum
w100 W50 W15	117. 58. 18.	292. 86. 43.

Input Parameters: _____ 7.96 ft/s Average Channel Velocity Output Results: _____ 1.58 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 2.750 ft 1.34 ft 1.94 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 1797. w100 719. 359. W50 532. 266. W15 112. _____ Isbash Method ____ Input Parameters: _____ Average Channel Velocity 7.96 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: 0.81 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 1.500 ft 0.73 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 1.06 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 292. w100 117. W50 58. 86. 18. W15 43. ____ Cal B & SP Method _____

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	7.96 ft/s 10.61 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	40.71 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	$1.00 \\ 0.50 \\ 0.25$
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters: Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	7.96 ft/s 4.00 ft 165. lbs/cu ft N/A deg.

Drop Structure Offsite Sec-1-basin_btm(0.2%slope) Riprap Placement Channel Bottom Safety Factor 1.1

Output Results:

Computed D50

0.22 ft

,

** FHWA Gradation**

Gradation Class	Facing
Layer Thickness	1.90 Ťt

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

Offsite Channel Sec-1 Date: 02/06/2009 Time: 16:25 ********** 4 RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * 2 \star ي. * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 1

USACE Method ____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 2.90 ft/s N/A N/A 165. lbs/cu ft 1.00 0.73 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.04 ftComputed Local Depth Averaged Velocity2.90 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15.	36. 11
	Page 1	

ASCE Method ____

Input Parameters: _____ Local Velocity 2.90 ft/s Cotangent of Side slope Unit Weight of Stone 2.50 165. lbs/cu ft Riprap Placement Channel Bank Output Results: ______ Computed D50 0.06 ft *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 0.750 ft Specific Weight Layer Thickness Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. w50 7. 11. W15 2. 5. ____ USBR Method ____ Input Parameters: Average Channel Velocity 2.90 ft/s Output Results: ______ Computed D50 0.11 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. 7. 2. W50 11. W15 5.

Offsite Channel Sec-1 USGS Method _ Input Parameters: _____ 2.90 ft/s Average Channel Velocity Output Results: _ _ _ _ _ _ _ _ _ _ _ _ _ 0.13 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 0.750 ft 0.37 ft 0.53 ft Specific Weight Layer Thickness Selected Minimum D30 Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 36. 15. W50 7. 11. 2. 5. W15 Isbash Method ____ Input Parameters: . ______ Average Channel Velocity 2.90 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: 0.11 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight 0.750 ft 0.37 ft 0.53 ft Layer Thickness Selected Minimum D30 Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. 7. W50 11. 2. W15 5. ___ Cal B & SP Method __

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	2.90 ft/s 3.87 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	0.10 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	2.90 ft/s 3.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Riprap Placement Safety Factor	Offsite Channe	l Sec-1 Channel Bank 1.1
Output Results:		
Computed D50		0.02 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs

D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

•

Date: 02/08/2009 Time: 12:42 **** *************** RIPRAP DESIGN SYSTEM (RDS) BY WEST Consultants, Inc. * Version 3.0 March, 2005 * * COPYRIGHT (c) 2005 * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - 10 ft bottom width Sect. 1 - btm

Average

Straight

2.90 ft/s

165. lbs/cu ft

Channel Bank

N/A

N/A

N/A

N/A

1.00

2.50

1.1

0.73 ft

Angular

Trapezoidal

_____ USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Output Results:

Computed D300.04 ftComputed Local Depth Averaged Velocity2.90 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Minimum	27
W100 W50	15. 7.	36. 11.
W15	2.	5.
ASCE	Method	
Input Parameters:		
Local Velocity		2.90 ft/s
Cotangent of Side slope Unit Weight of Stone	14	2.50 55. lbs/cu ft
Riprap Placement		Channel Bank
Output Results:		
Computed D50		0.06 ft
*** Using Gradations from CC		
Layer Thickness 0.7 Selected Minimum D30 0.	750 ft .37 ft	
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0.	750 ft .37 ft	.ght, lbs Maximum
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight	250 ft 37 ft 53 ft Stone Wei Minimum 15.	Maximum 36.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight	250 ft 37 ft 53 ft Stone Wei Minimum	Maximum
W15	250 ft .37 ft 53 ft Minimum 15. 7.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15	250 ft .37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters:	250 ft .37 ft 53 ft Minimum 15. 7. 2.	Maximun 36. 11. 5.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters: Average Channel Velocity	250 ft .37 ft 53 ft Minimum 15. 7. 2.	Maximun 36. 11. 5.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR	250 ft .37 ft 53 ft Minimum 15. 7. 2.	Maximum 36. 11.
Layer Thickness 0.7 Selected Minimum D30 0. Selected Minimum D90 0. Percent Lighter by Weight W100 W50 W15 USBR Input Parameters: Average Channel Velocity Dutput Results:	250 ft .37 ft 53 ft Minimum 15. 7. 2. Method	Maximun 36. 11. 5. 2.90 ft/s 0.11 ft

*

Selected	Minimum	D30	0.37	ft
Selected	Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Minimum	Weight, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USGS	Method	
Input Parameters:		
Average Channel Velocity		2.90 ft/s
Output Results:		
Computed D50		0.13 ft
*** Using Gradations from CC	DE ETL 1110-2-120) ***
Specific Weight 165.0 lbs, Layer Thickness 0.7 Selected Minimum D30 0 Selected Minimum D90 0.	750 ft .37 ft .53 ft Stone W	Weight, lbs
Percent Lighter by Weight	Minimum	Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbasł	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level		2.90 ft/s 165. lbs/cu ft High
Output Results:		
		•
Computed D50		0.11 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight		
W100 W50	15. 7.	36 11
W15	2.	5
	P Method	
Input Parameters:		
Average Channel Velocity		2.90 ft/
Velocity Affecting Bank Unit Weight of Stone	1	3.87 ft/ 65. lbs/cu f
Cotangent of Side slope	1	2.5
Flow Type		Impingin
Output Results:		
Computed W		0.10 lb:
** CalTrans A G	Gradation **	
(1) Outside Layer:		
Gradation Class		1/2 Toi
Layer Thickness		3.40 fi
Percent Larger than	Ro	ck Size (Ton)
0 - 5		1.00
50 - 100 95 - 100		0.50 0.25
(2) Inner Layer:		
Gradation Class Layer Thickness		None 0.00 ft
		0.00 ft
(3) Backing:		

Layer Thickness 1.8 ft (4) Fabric: Fabric Type В Total Thickness (1) + (2) + (3) + (4): 5.2 ft ______ HEC-11 Method _____ Input Parameters: ______ Average Channel Velocity 2.90 ft/s Average Flow Depth 3.00 ft Unit Weight of Stone 165. lbs/cu ft Cotangent of Side Slope Material Angle of Repose 2.50 41.00 deg. Riprap Placement Channel Bank Safety Factor 1.1 Output Results: Computed D50 0.02 ft ** FHWA Gradation** Gradation Class Layer Thickness Facing 1.90 ft Percent Smaller by Size Rock Size, ft Rock Weight, lbs D100 1.30 200. D50 0.95 75. D10 0.40 5.

-

Offsite Channel Sec-2 Date: 02/06/2009 Time: 16:26 * 4. RIPRAP DESIGN SYSTEM (RDS) * ΒY * * WEST Consultants, Inc. * 20 * * March, 2005 * * Version 3.0 * * * * * COPYRIGHT (c) 2005 * * * WEST CONSULTANTS, INC. PH: 858-487-9378 * * 16870 WEST BERNARDO DRIVE FAX:858-487-9448 * * SUITE 340 * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 2

_____ USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 4.45 ft/s N/A N/A 165. lbs/cu ft 1.00 1.35 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.10 ftComputed Local Depth Averaged Velocity4.45 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu	
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 4.45 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.14 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weigh Minimum	t, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity		4.45 ft/s
Output Results:		

Computed D50

0.26 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
W15	2.	5.

Offsite Channel Sec-2 USGS Method _ Input Parameters: _____ 4.45 ft/s Average Channel Velocity Output Results: 0.38 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness Selected Minimum D30 0.750 ft 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. 15. W100 7. 2. 11. W50 5. W15 Isbash Method ____ Input Parameters: _____ Average Channel Velocity 4.45 ft/s 165. lbs/cu ft Unit Weight of Stone High Turbulence Level Output Results: 0.25 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 0.750 ft 0.37 ft Specific Weight Layer Thickness Selected Minimum D30 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. 11. W50 7. 2. 5. W15 ____ Cal B & SP Method ____

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	4.45 ft/s 5.93 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	1.24 lbs
** CalTrans A Gradation **	÷
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Page 4	4.45 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Page 4

Riprap Placement Safety Factor	Offsite Channe	l Sec-2 Channel Bank 1.1
Output Results:		
Computed D50		0.05 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ 1.30 \\ 0.95 \\ 0.40 $	200. 75. 5.

Pa	aq	е	- 5

Offsite Channel Sec-2_btm Date: 02/06/2009 Time: 17:01 * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * . WEST Consultants, Inc. * * * ÷ * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 4 * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 2 btm

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement

Average Trapezoidal Straight N/A 4.45 ft/s N/A N/A 165. lbs/cu ft 1.00 1.35 ft 2.50 1.1 Channel Bank Angular

Output Results:

Rock Type

Computed D300.10 ftComputed Local Depth Averaged Velocity4.45 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

W15

W15

____ ASCE Method _____ Input Parameters: Local Velocity 4.45 ft/s Cotangent of Side slope 2.50 Unit Weight of Stone 165. lbs/cu ft Riprap Placement Channel Bank Output Results: _____ 0.14 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 0.750 ft 0.37 ft Layer Thickness Selected Minimum D30 0.53 ft Selected Minimum D90 . Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. 7. 2. W50 11. W15 5. _____ USBR Method ___ Input Parameters: _____ 4.45 ft/s Average Channel Velocity Output Results: _____ 0.26 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum 36. w100 15. W50 7. 11.

2.

5.

Offsite Channel Sec-2_btm USGS Method Input Parameters: Average Channel Velocity 4.45 ft/s Output Results: Computed D50 0.38 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum W100 15. 36. W50 7. 2. 11. W15 5. ____ Isbash Method ____ Input Parameters: _____ Average Channel Velocity 4.45 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: ______ Computed D50 0.25 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 11. W15 2. 5. _ Cal B & SP Method _

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	4.45 ft/s 5.93 ft/s 165. lbs/cu ft 2.50 Impinging
Dutput Results:	
Computed W	1.24 lbs
** CalTrans A Gradation **	*
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
otal Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
nput Parameters:	
Average Channel Velocity Average Flow Depth Init Weight of Stone Cotangent of Side Slope Naterial Angle of Repose Page 4	4.45 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Riprap Placement Safety Factor	Offsite Channel	Sec-2_btm Channel Bank 1.1
Output Results:		
Computed D50		0.05 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs

D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

Offsite Channel Sec-3 Date: 02/06/2009 Time: 16:27 *** * 2. RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * * * Version 3.0 March, 2005 × * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. \dot{x} * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ************

Project: Cholla Ash Offsite Description: Offsite Channel - Section 3

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Trapezoidal Straight N/A 3.85 ft/s N/A N/A 165. lbs/cu ft 1.00 1.85 ft 2.50 1.1 Channel Bank Angular

Average

Output Results:

Computed D300.06 ftComputed Local Depth Averaged Velocity3.85 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter b	by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50		15. 7.	36. 11.
		Page 1	

_____ ASCE Method _____

Input Parameters: -----

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

3.85 ft/s 2.50 165. lbs/cu ft Channe¹ Bank

Output Results: ______

Computed D50

0.10 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR M	ethod	
Input Parameters:		
Average Channel Velocity	3	.85 ft/s
Output Results:		
Computed D50		0.20 ft
*** Using Gradations from COE	ETL 1110-2-120 ***	
Specific Weight 165.0 lbs/c Layer Thickness 0.75 Selected Minimum D30 0.3 Selected Minimum D90 0.5	0 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

USG	Offsite Channel Sec S Method	
Input Parameters:		
Average Channel Velocity	-	3.85 ft/s
Output Results:		
Computed D50		0.27 ft
*** Using Gradations from	COE ETL 1110-2-120 *	* * *
Specific Weight 165.0 lb Layer Thickness 0 Selected Minimum D30 Selected Minimum D90	os/cu ft 0.750 ft 0.37 ft 0.53 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isba	sh Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	16	3.85 ft/s 5. lbs/cu ft High
Output Results:		
Computed D50		0.19 ft
*** Using Gradations from	COE ETL 1110-2-120 *	**
	.750 ft 0.37 ft	
Percent Lighter by Weight	Stone Wei Minimum	ght, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
	& SP Method	

Average Channel Velocity	3.85 ft/s
Velocity Affecting Bank	5.13 ft/s
Unit Weight of Stone	165. lbs/cu ft
Cotangent of Side slope	2.50
Flow Type	Impinging

Output Results:

Computed W

0.52 lbs

** CalTrans A Gradation **

(1) Outside Layer:

Gradation Class	1/2 Ton
Layer Thickness	3.40 ft

Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	

Input Parameters:

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose

Riprap Placement Safety Factor	Offsite Channo	el Sec-3 Channel Bank 1.1
Output Results:		
Computed D50		0.03 ft
*	* FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	e Rock Size, ft	Rock Weight, 1bs

1.30	200.
	75.
0.40	5.
	1.30 0.95 0.40

Offsite Channel Sec-3_btm Date: 02/06/2009 Time: 17:00 ********** RIPRAP DESIGN SYSTEM (RDS) 4. * ΒY * * WEST Consultants, Inc. * * * * * * Version 3.0 March, 2005 * * ** * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * *************

Project: Cholla Ash Offsite Description: Offsite Channel - Section 3 btm

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 3.85 ft/s N/A N/A 165. lbs/cu ft 1.00 1.85 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.06 ftComputed Local Depth Averaged Velocity3.85 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50	15. 7.	36. 11.
	Page 1	

____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 3.85 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.10 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
US	BR Method	
Input Parameters:		
Average Channel Velocity	3	.85 ft/s

Output Results:

Computed D50

0.20 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
w15	2.	5.

	fsite Channel Sec-3_ Method	_btm
Input Parameters:		
Average Channel Velocity		3.85 ft/s
Output Results:		
Computed D50		0.27 ft
*** Using Gradations from C	OE ETL 1110-2-120.*	**
Specific Weight 165.0 lbs, Layer Thickness 0. Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ght, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
Isbasł	n Method	
Input Parameters:		
Average Channel Velocity Unit weight of Stone Turbulence Level	165	3.85 ft/s 5. lbs/cu ft High
Output Results:		
Computed D50		0.19 ft
*** Using Gradations from CC	DE ETL 1110-2-120 **	• *
Selected Minimum D30 0.	/cu ft /50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone Weig Minimum	ht, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
	SP Method	J.

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	3.85 ft/s 5.13 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	0.52 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	$1.00 \\ 0.50 \\ 0.25$
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	3.85 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Riprap Placement Safety Factor	Offsite Channel	Sec-3_btm Channel Bank 1.1
Output Results:		
Computed D50		0.03 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ \begin{array}{r} 1.30 \\ 0.95 \\ 0.40 \end{array} $	200. 75. 5.

,

Offsite Channel Sec-4 Date: 02/06/2009 Time: 16:31 ***** * RIPRAP DESIGN SYSTEM (RDS) 2 * * ΒY * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 4. * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 4

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 5.30 ft/s N/A N/A 165. lbs/cu ft 1.00 1.91 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.14 ftComputed Local Depth Averaged Velocity5.30 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
	Page 1	

W15

.

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement	165 C	5.30 ft/s 2.50 . lbs/cu ft hannel Bank
Output Results:		
Computed D50		0.20 ft
*** Using Gradations from Co	DE ETL 1110-2-120 **	*
Specific Weight 165.0 lbs, Layer Thickness 0.3 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone Weigl Minimum	ht, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR	Method	· · · · · · · · · · · · · · · · · · ·
Input Parameters:		
Average Channel Velocity		5.30 ft/s
Output Results:		
Computed D50		0.38 ft
*** Using Gradations from CC	DE ETL 1110-2-120 ***	*
Selected Minimum D30 0.	/cu ft 750 ft .37 ft .53 ft	
Doncont Lighton by Michael	Stone Weigł	
Percent Lighter by Weight	Minimum	Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

USGS	Offsite Channel So Method	ec-4
Input Parameters:		
Average Channel Velocity		5.30 ft/s
Output Results:		
Computed D50		0.59 ft
*** Using Gradations from Co	OE ETL 1110-2-120	* * *
Specific Weight 165.0 lbs, Layer Thickness 1.0 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 000 ft .49 ft .70 ft	
Percent Lighter by Weight	Stone Wo Minimum	eight, lbs Maximum
w100 w50 w15	35. 17. 5.	86. 26. 13.
Isbash	n Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Curbulence Level	1	5.30 ft/s L65. lbs/cu ft High
Dutput Results:		
computed D50		0.36 ft
*** Using Gradations from CO	DE ETL 1110-2-120	* * *
pecific Weight 165.0 lbs/ ayer Thickness 0.7 elected Minimum D30 0. elected Minimum D90 0.	cu ft 50 ft 37 ft 53 ft	
ercent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
100 w50 w15	15. 7. 2.	36. 11. 5.
Са] в &	SP Mathad	

	Offsite Ch	nannel Sec	-4
Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type		16	5.30 ft/s 7.07 ft/s 55. lbs/cu ft 2.50 Impinging
Output Results:			
Computed W			3.55 lbs
** CalTrans	A Gradati	on **	
(1) Outside Layer:			
Gradation Class Layer Thickness			1/2 Ton 3.40 ft
Percent Larger than		Roc	k Size (Ton)
0 - 5 50 - 100 95 - 100			$1.00 \\ 0.50 \\ 0.25$
(2) Inner Layer:			
Gradation Class Layer Thickness			None 0.00 ft
(3) Backing:			
Backing Class No. Layer Thickness			1 1.8 ft
(4) Fabric:			
Fabric Type			В
Total Thickness (1)+(2)+(3)+(4):		5.2 ft
HEC-1	1 Method		
Input Parameters:			
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose		16 ne 4	5.30 ft/s 4.00 ft 55. lbs/cu ft 2.50 41.00 deg.

Riprap Placement Safety Factor	Offsite Channe	l Sec-4 Channel Bank 1.1
Output Results:		
Computed D50		0.09 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

.

Offsite Channel Sec-4_btm Date: 02/06/2009 Time: 16:59 ***** * RIPRAP DESIGN SYSTEM (RDS) * $_{\star}$ * ΒY * * WEST Consultants, Inc. * * * 4 * Version 3.0 March, 2005 * * * * * * COPYRIGHT (c) 2005 4. * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ******

Project: Cholla Ash Offsite Description: Offsite Channel - Section 4 btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 5.30 ft/s N/A N/A 165. lbs/cu ft 1.00 1.91 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D30 Computed Local Depth Averaged Velocity	0.14 ft 5.30 ft/s
Local Velocity/Avg. Velocity	1.00
Side Slope Correction Factor	1.06
Correction for Layer Thickness	1.00
Correction for Secondary Currents	1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15.	36. 11
	Page 1	• • • •

ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 5.30 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.20 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBR M	ethod	
Input Parameters:		
Average Channel Velocity	5	.30 ft/s
Output Results:		
Computed D50		0.38 ft
*** Using Gradations from COE	ETL 1110-2-120 ***	
Specific Weight165.0 lbs/clLayer Thickness0.75Selected Minimum D300.3Selected Minimum D900.5	0 ft 7 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

USGS	site Channel Sec Method	-4_btm
Input Parameters:		
Average Channel Velocity		5.30 ft/s
Dutput Results:		
Computed D50		0.59 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
Specific Weight 165.0 lbs/ Layer Thickness 1.0 Selected Minimum D30 0. Selected Minimum D90 0.	/cu ft 000 ft .49 ft .70 ft	
Percent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
v100 w50 w15	35. 17. 5.	86. 26. 13.
Isbash	n Method	
nput Parameters:		
verage Channel Velocity nit Weight of Stone urbulence Level		5.30 ft/s 165. lbs/cu ft High
utput Results:		
mputed D50		0.36 ft
*** Using Gradations from CO	DE ETL 1110-2-120	***
pecific Weight 165.0 lbs/ ayer Thickness 0.7 elected Minimum D30 0. elected Minimum D90 0.	cu ft 50 ft 37 ft 53 ft	
ercent Lighter by Weight	Stone W Minimum	eight, lbs Maximum
100 w50 w15	15. 7. 2.	36. 11. 5.
Са] в &	SP Method	

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	5.30 ft/s 7.07 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	3.55 lbs
** CalTrans A Gradation **	*
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	5.30 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Page 4

Riprap Placement Safety Factor	Offsite Channel	Sec-4_btm Channel Bank 1.1
Output Results:		
Computed D50		0.09 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	1.30 0.95 0.40	200. 75. 5.

Offsite Channel Sec-5&6 Date: 02/06/2009 Time: 16:32 ******* * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * WEST Consultants, Inc. × * * * * Version 3.0 March, 2005 * ÷.,-* * * COPYRIGHT (c) 2005 4 * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - Section 5&6

USACE Method _____

Input Parameters: Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.39 ft/s N/A N/A 165. lbs/cu ft 1.00 1.36 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.09 ftComputed Local Depth Averaged Velocity4.39 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15.	36. 11.
	Page 1	

_____ ASCE Method _____

Input Parameters: ______

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

4.39 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results: _____

Computed D50

0.14 ft

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
USBR	Method	
Input Parameters:		
Average Channel Velocity	4	.39 ft/s
Output Results:		
Computed D50		0.26 ft
*** Using Gradations from CO	E ETL 1110-2-120 ***	
	cu ft 50 ft 37 ft 53 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

Offsite Channel Sec-5&6 USGS Method _ Input Parameters: -----Average Channel Velocity 4.39 ft/s Output Results: Computed D50 0.37 ft *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft Specific Weight Layer Thickness 0.750 ft 0.37 ft Selected Minimum D30 Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum W100 15. 36. 7. W50 11. 2. W15 5. _____ Isbash Method ____ Input Parameters: _____ Average Channel Velocity 4.39 ft/s 165. lbs/cu ft Unit Weight of Stone Turbulence Level High Output Results: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Computed D50 0.25 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight Layer Thickness 165.0 lbs/cu ft 0.750 ft Selected Minimum D30 0.37 ft 0.53 ft Selected Minimum D90 Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. w50 7. 11. W15 2. 5. ____ Cal B & SP Method __

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	4.39 ft/s 5.85 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	1.15 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose	4.39 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg.

Page 4

Riprap Placement Safety Factor	Offsite Channel	Sec-5&6 Channel Bank 1.1
Output Results:		
Computed D50		0.05 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$1.30 \\ 0.95 \\ 0.40$	200. 75. 5.

Offsite Channel Sec-5&6_btm Date: 02/06/2009 Time: 16:59 **** * RIPRAP DESIGN SYSTEM (RDS) * \star \star ΒY * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 $\frac{1}{2}$ * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - section 5&6 btm

USACE Method _____

Input Parameters: -----Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 4.39 ft/s N/A N/A 165. lbs/cu ft 1.00 1.36 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.09 ftComputed Local Depth Averaged Velocity4.39 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 2.40 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.04 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
W15	2.	5.

_____USBR Method _____

Input Parameters:

Average Channel Velocity

4.39 ft/s

Output Results:

Computed D50

0.26 ft

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum		0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
W15	2.	5.

Offsite Channel Sec-5&6_btm USGS Method Input Parameters: _____ Average Channel Velocity 4.39 ft/s Output Results: Computed D50 0.37 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 2. 11. W15 5. Isbash Method ____ Input Parameters: _____ Average Channel Velocity 4.39 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High Output Results: ______ Computed D50 0.25 ft *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft Layer Thickness 0.750 ft Selected Minimum D30 0.37 ft Selected Minimum D90 0.53 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 15. 36. W50 7. 11. W15 2. 5. ____ Cal B & SP Method __

1

Offsite Ch	annel Sec-5&6_btm
Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	4.39 ft/s 5.85 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	1.15 lbs
** CalTrans A Grada	tion **
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Tor 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	Е
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Metho	d
Input Parameters:	
Average Channel Velocity	4.39 ft/s

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor

Output Results: _____

Computed D50

0.05 ft

75. 5.

** FHWA Gradation**

Facing 1.90 ft

Gradation Class Layer Thickness

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

Drop Structure Offsite Channel Sec-6(0.2%slope) Date: 02/09/2009 Time: 17:30 * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * $_{\star}$ WEST Consultants, Inc. * $\dot{\times}$ * 4 * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. ÷ * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Project: Cholla Ash Offsite Description: Offsite Channel - SEction 6 DROP

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 12.05 ft/s N/A N/A 165. lbs/cu ft 1.00 0.58 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D30 Computed Local Depth Averaged Velocity	1.42 ft 12.05 ft/s
Local Velocity/Avg. Velocity	1.00
Side Slope Correction Factor	1.06
Correction for Layer Thickness	1.00
Correction for Secondary Currents	1.00

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		3.000	ft
Selected Minimum		1.46	ft
Selected Minimum	D90	2.11	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	933. 467.	2333. 690.
	Page 1	

W15

ASCE	Method	
Input Parameters:		
Local Velocity Cotangent of Side slope		12.05 ft/s 2.50
Unit weight of Stone Riprap Placement		165. lbs/cu ft Channel Bank
Output Results:		
Computed D50		1.03 ft
*** Using Gradations from C	OE ETL 1110-2-12	20 ***
Specific Weight 165.0 lbs Layer Thickness 1. Selected Minimum D30 0 Selected Minimum D90 1	/cu ft 750 ft .85 ft .23 ft	_
Percent Lighter by Weight	Stone Minimum	Weight, lbs Maximum
W100 W50 W15	185. 93. 29.	463. 137. 69.
USBR	Method	
Input Parameters:		
Average Channel Velocity		12.05 ft/s
Dutput Results:		
Computed D50		2.06 ft
*** Using Gradations from C	DE ETL 1110-2-12	0 ***
Selected Minimum D30 1	/cu ft 500 ft .70 ft .47 ft	
Percent Lighter by Weight	Stone Minimum	Weight, lbs Maximum
w100	1482.	3704.
w50 w15	741.	1096. 548.

Drop	Structure	Offsite	Channel	Sec-6(0.	2%slope)
-	USGS	Method _			

Input Parameters:

Average Channel Velocity

Cotangent of Side slope

Flow Type

12.05 ft/s

Output Results:

Computed D50

4.34 ft

2.50

Impinging

*** Using Gradations from COE ETL 1110-2-120 ***

Warning: The required stone size is greater than the largest USACE stone gradation.

_____ Isbash Method _____ Input Parameters: ______ 12.05 ft/s 165. lbs/cu_ft Average Channel Velocity Unit Weight of Stone Turbulence Level High Output Results: -----1.86 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 3.500 ft Specific Weight Layer Thickness Selected Minimum D30 1.70 ft Selected Minimum D90 2.47 ft Stone Weight, 1bs Percent Lighter by Weight Minimum Maximum w100 1482. 3704. W50 741. 1096. W15 232. 548. _____ Cal B & SP Method _____ Input Parameters: .______________ Average Channel Velocity 12.05 ft/s 16.07 ft/s Velocity Affecting Bank Unit Weight of Stone 165. lbs/cu ft

Output Results:			
Computed W	489.90 lbs		
** CalTrans A Gra	adation **		
(1) Outside Layer:			
Gradation Class Layer Thickness	1/2 Ton 3.40 ft		
Percent Larger than	Rock Size (Ton)		
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25		
(2) Inner Layer:			
Gradation Class Layer Thickness	None 0.00 ft		
(3) Backing:			
Backing Class No. Layer Thickness	1 1.8 ft		
(4) Fabric:			
Fabric Type	В		
Total Thickness (1)+(2)+(3)+(4):	5.2 ft		
HEC-11 Method			
Input Parameters:			
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor	12.05 ft/s 4.00 ft 165. lbs/cu ft 2.50 41.00 deg. Channel Bank 1.1		
Output Results:			
Computed D50	1.03 ft		

** FHWA Gradation**

Gradation Class	Light
Layer Thickness	2.60 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.80	500.
D50	1.30	200.
D10	0.40	5.

Drop Structure Offsite Channel Sec-6_btm(0.2%slope) Date: 02/09/2009 Time: 17:31 * * RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. * * * * * Version 3.0 March, 2005 * * * ÷ * * COPYRIGHT (c) 2005 * * * WEST CONSULTANTS, INC. РН: 858-487-9378 * * 16870 WEST BERNARDO DRIVE * SUITE 340 FAX:858-487-9448 * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM * ******

Project: Cholla Ash Offsite Description: Offsite Channel - SECTION 6 DROP btm

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 12.05 ft/s N/A 165. lbs/cu ft 1.00 0.58 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D301.42 ftComputed Local Depth Averaged Velocity12.05 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		3.000	ft
Selected Minimum	D30	1.46	ft
Selected Minimum	D90	2.11	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	933. 467.	2333. 690.
	Page 1	

W15

W100

w50

W15

____ ASCE Method __ Input Parameters: _____ 12.05 ft/s Local Velocity Cotangent of Side slope N/A Unit Weight of Stone 165. lbs/cu ft Riprap Placement Channel Bottom Output Results: ______ 0.95 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** 165.0 lbs/cu ft 1.750 ft 0.85 ft Specific Weight Layer Thickness Selected Minimum D30 1.23 ft Selected Minimum D90 Stone Weight, 1bs Maximum Percent Lighter by Weight Minimum 185. 463. W100 93. 137. W50 29. 69. W15 _____ USBR Method _____ Input Parameters: _____ 12.05 ft/s Average Channel Velocity Output Results: ______ 2.06 ft Computed D50 *** Using Gradations from COE ETL 1110-2-120 *** Specific Weight 165.0 lbs/cu ft 3.500 ft Layer Thickness Selected Minimum D30 1.70 ft Selected Minimum D90 2.47 ft Stone Weight, 1bs Maximum Percent Lighter by Weight Minimum 3704.

1482.

741.

232.

1096.

548.

Input Parameters:

Average Channel Velocity

Output Results:

Computed D50

4.34 ft

12.05 ft/s

*** Using Gradations from COE ETL 1110-2-120 ***

Warning: The required stone size is greater than the largest USACE stone gradation.

_____ Isbash Method _____ Input Parameters: ------Average Channel Velocity 12.05 ft/s Unit Weight of Stone 165. lbs/cu ft Turbulence Level High

Output Results:

Computed D50

1.86 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		3.500	ft
Selected Minimum		1.70	ft
Selected Minimum	D90	2.47	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	1482.	3704.
w50	741.	1096.
w15	232.	548.

Cal B & SP Method _____

Input Parameters:

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type 12.05 ft/s 16.07 ft/s 165. lbs/cu ft 2.50 Impinging

Output Results:	
Computed W	489.90 lbs
** CalTrans A Gradation	۱ **
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Riprap Placement Safety Factor	12.05 ft/s 4.00 ft 165. lbs/cu ft N/A deg. Channel Bottom 1.1
Output Results:	
Computed D50	0.77 ft

** FHWA Gradation**

Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	1.30 0.95 0.40	200. 75. 5.

Offsite Channel Sec-7 Date: 02/06/2009 Time: 16:32 * RIPRAP DESIGN SYSTEM (RDS) * * * ΒY * * WEST Consultants, Inc. * * * ÷ * Version 3.0 March, 2005 * * * * * COPYRIGHT (c) 2005 4 * WEST CONSULTANTS, INC. * * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * WEB:WWW.WESTCONSULTANTS.COM * * SAN DIEGO, CA 92127

Project: Cholla Ash Offsite Description: Offsite Channel - Section 7

USACE Method _____

Input Parameters:

Velocity Type Channel Shape Channel Type Bend Angle (deg) Average Channel Velocity Bottom width Bend Radius Top Width Unit Weight of Stone Riprap Layer Thickness Local Flow Depth Cotangent of Side Slope Safety Factor Riprap Placement Rock Type

Average Trapezoidal Straight N/A 2.40 ft/s N/A 165. lbs/cu ft 1.00 0.86 ft 2.50 1.1 Channel Bank Angular

Output Results:

Computed D300.02 ftComputed Local Depth Averaged Velocity2.40 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu ft
Layer Thickness		0.750 ft
Selected Minimum	D30	0.37 ft
Selected Minimum	D90	0.53 ft

Percent Lighter by Weight	Stone Weight Minimum	, lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

.

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement 2.40 ft/s 2.50 165. lbs/cu ft Channel Bank

Output Results:

Computed D50

0.04 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weigh [.] Minimum	t, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
USBF	R Method	
Input Parameters:		
Average Channel Velocity		2.40 ft/s
Output Results:		
Computed D50		0.07 ft
*** Using Gradations from (COE ETL 1110-2-120 ***	
Specific Weight 165.0 lbs Layer Thickness 0 Selected Minimum D30 (Selected Minimum D90 (s/cu ft .750 ft).37 ft).53 ft	

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100	15.	36.
w50	7.	11.
w15	2.	5.

	fsite Channel Sec- Nethod	
Input Parameters:		
Average Channel Velocity		2.40 ft/s
Output Results:		
Computed D50		0.08 ft
*** Using Gradations from COE	ETL 1110-2-120 **	* *
Specific Weight165.0 lbs/cLayer Thickness0.75Selected Minimum D300.3Selected Minimum D900.5	u ft O ft 7 ft 3 ft	
Percent Lighter by Weight	Stone Weig Minimum	ght, lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
Isbash	Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	165	2.40 ft/s 5. lbs/cu ft High
Output Results:		
Computed D50		0.07 ft
*** Using Gradations from COE	ETL 1110-2-120 **	**
Specific Weight165.0lbs/cdLayer Thickness0.75Selected Minimum D300.3Selected Minimum D900.5	u ft O ft 7 ft 3 ft	
Specific Weight 165.0 lbs/cu Layer Thickness 0.756 Selected Minimum D30 0.3 Selected Minimum D90 0.55 Percent Lighter by Weight	u ft O ft 7 ft 3 ft Stone Weig Minimum	
Selected Minimum D30 0.3 Selected Minimum D90 0.5	7 ft 3 ft Stone Weig	ht, 1bs Maximum 36. 11. 5.

Average Channel Velocity	2.40 ft/s
Velocity Affecting Bank	3.20 ft/s
Unit Weight of Stone	165. lbs/cu ft
Cotangent of Side slope	2.50
Flow Type	Impinging

Output Results:

Computed W

0.03 lbs

** CalTrans A Gradation **

(1) Outside Layer:

Gradation Class	1/2 Ton
Layer Thickness	3.40 ft

Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1.8 ft
(4) Fabric:	

Total Thickness (1)+(2)+(3)+(4): 5.2 ft

_____ HEC-11 Method _____

Input Parameters:

Fabric Type

Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose 2.40 ft/s 3.00 ft 165. lbs/cu ft 2.50 41.00 deg.

В

Riprap Placement Safety Factor	Offsite Channe	l Sec-7 Channel Bank 1.1
Output Results:		
Computed D50		0.01 ft
**	FHWA Gradation**	
Gradation Class Layer Thickness	Facing 1.90 ft	
Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100 D50 D10	$ 1.30 \\ 0.95 \\ 0.40 $	200. 75. 5.

Date: 02/06/2009 Time: 16:58 4 * RIPRAP DESIGN SYSTEM (RDS) * * ΒY * * WEST Consultants, Inc. ÷ * * * * Version 3.0 March, 2005 * ÷ * * * * * COPYRIGHT (c) 2005 * * WEST CONSULTANTS, INC. * 16870 WEST BERNARDO DRIVE PH: 858-487-9378 * * SUITE 340 FAX:858-487-9448 * WEB:WWW.WESTCONSULTANTS.COM * * SAN DIEGO, CA 92127 WEB:WWW.WESTCONSULTANTS.COM *

Offsite Channel Sec-7_btm

Project: Cholla Ash Offsite Description: Offsite Channel - Section 7 btm

USACE Method _____

Average Trapezoidal Straight N/A 2.40 ft/s N/A 165. lbs/cu ft 1.00 0.86 ft N/A 1.1 Channel Bottom Angular

Output Results:

Computed D300.02 ftComputed Local Depth Averaged Velocity2.40 ft/sLocal Velocity/Avg. Velocity1.00Side Slope Correction Factor1.06Correction for Layer Thickness1.00Correction for Secondary Currents1.00

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum	D30	0.37	ft
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50	15. 7.	36. 11.
	Page 1	

_____ ASCE Method _____

Input Parameters:

Local Velocity Cotangent of Side slope Unit Weight of Stone Riprap Placement

2.40 ft/s N/A 165. lbs/cu ft Channel Bottom

Output Results:

Computed D50

0.04 ft

*** Using Gradations from COE ETL 1110-2-120 ***

Specific Weight	165.0	lbs/cu	ft
Layer Thickness		0.750	ft
Selected Minimum		0.37	
Selected Minimum	D90	0.53	ft

Percent Lighter by Weight	Stone Weight, t Minimum	lbs Maximum
W100 W50 W15	15. 7. 2.	36. 11. 5.
	USBR Method	
Input Parameters:		
Average Channel Velocity	2	.40 ft/s
, Output Results:		
Computed D50		0.07 ft
*** Using Gradations fr	rom COE ETL 1110-2-120 ***	
Specific Weight 165.(Layer Thickness Selected Minimum D30 Selected Minimum D90	0.37 ft	
Percent Lighter by Weight	Stone Weight, Minimum	lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.

W15

	fsite Channel Sec- Method	
Input Parameters:		
Average Channel Velocity		2.40 ft/s
Output Results:		
Computed D50		0.08 ft
*** Using Gradations from C	OE ETL 1110-2-120	***
Specific Weight 165.0 lbs, Layer Thickness 0.7 Selected Minimum D30 0 Selected Minimum D90 0	/cu ft 750 ft .37 ft .53 ft	
Percent Lighter by Weight	Stone We Minimum	eight, lbs Maximun
w100 w50 w15	15. 7. 2.	36. 11. 5.
Isbasł	h Method	
Input Parameters:		
Average Channel Velocity Unit Weight of Stone Turbulence Level	1	2.40 ft/s .65. lbs/cu ft High
Output Results:		
Computed D50		0.07 ft
*** Using Gradations from CC	DE ETL 1110-2-120	* * *
	750 ft .37 ft	
Percent Lighter by Weight	Stone We Minimum	ight, lbs Maximum
w100 w50 w15	15. 7. 2.	36. 11. 5.
са] в &	SP Method	

Average Channel Velocity Velocity Affecting Bank Unit Weight of Stone Cotangent of Side slope Flow Type	2.40 ft/s 3.20 ft/s 165. lbs/cu ft 2.50 Impinging
Output Results:	
Computed W	0.03 lbs
** CalTrans A Gradation **	
(1) Outside Layer:	
Gradation Class Layer Thickness	1/2 Ton 3.40 ft
Percent Larger than	Rock Size (Ton)
0 - 5 50 - 100 95 - 100	1.00 0.50 0.25
(2) Inner Layer:	
Gradation Class Layer Thickness	None 0.00 ft
(3) Backing:	
Backing Class No. Layer Thickness	1 1.8 ft
(4) Fabric:	
Fabric Type	В
Total Thickness (1)+(2)+(3)+(4):	5.2 ft
HEC-11 Method	
Input Parameters:	
Average Channel Velocity Average Flow Depth Unit Weight of Stone Cotangent of Side Slope Material Angle of Repose Page 4	2.40 ft/s 3.00 ft 165. lbs/cu ft N/A deg.

Offsite Channel Sec-7_btm Channel Bottom 1.1

Riprap Placement Safety Factor

Output Results:

Computed D50

0.01 ft

** FHWA Gradation**

Gradation Class Facing Layer Thickness 1.90 ft

Percent Smaller by Size	Rock Size, ft	Rock Weight, lbs
D100	1.30	200.
D50	0.95	75.
D10	0.40	5.

i

OFF-SITE CHANNEL

DROP STRUCTURE CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

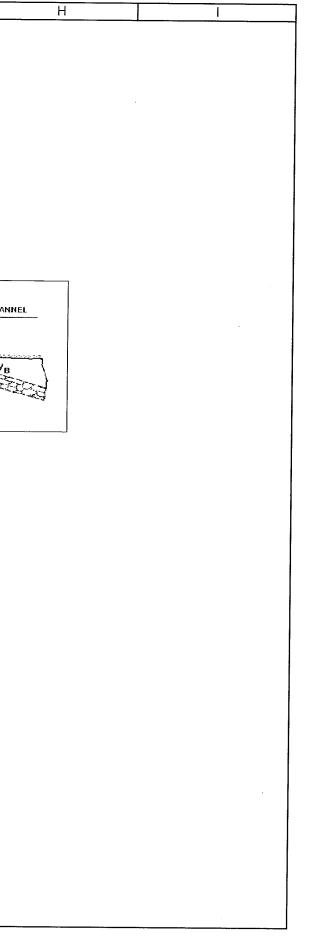
Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Offsite Drop Structure Channel Section 1 Into Basir

	Offsite Drop Structure Channel Section 1 Into Basin									
	A	В	С	D	Е	F	G	Н		J
1	Riprap Ba	sin Sizing				•				
2]	-								
3	Q=	25	cfs	flow rate fo	r section 1	just before	brink of drop)		
4	Vallow=	0.001	ft/s	velocity for			,			
5	TW=	10		normal dep	· •	•				
6	Wo=	10	ft	channel bo						
7										
8	From FHW	A Hydraulic	Design of E	nergy Dissig	pators for C	ulverts and	Channels, J	luly 2006		
9			o), depth (yo					•		
10	1		<i>,,</i> , , , , , , , , , , , , , , , , , ,	,,		~ ,				
11	From Flow	master outp	out files:							
	yo= ye=	0.29		normal dep	th for drop					
	Vo=	7.96		velocity for	-					
	Fr=	2.68		Froude nur		qc				
15	1									
	2) Select tr	ial D50 and	obtain hs/ye	from Equat	ion 10.1.					
17	, í			·						
18	Equation 10	h_s	$= 0.86 \left(\frac{D_{50}}{D_{50}} \right)$	V_{o}						
19		$\frac{1}{v}$	$= 0.86 \left(\frac{D_{50}}{y_e} \right)$		$= \left -C_{o} \right $					
20		У e	(ye	$\int \sqrt{gy_e}$						
21						-				
22	Get tailwate	er paramete	er Co:			, r	SIPATOR POOL	APRON	CHANNEL	
23	Co =	1.4	if TW/ye < 0	.75	γ ₀ =	Ye 🕇	Ls	LA	*	
24	Co =	136.331	if 0.75 < TW	/ye < 1.0			TOP OF RIPRAP		The second se	
	Co =	3	if 1.0 < TW/y	/e			<u>Iw</u>) mut		<u>ئ</u>
26					~			COLORED C		11
	TW/ye =	34.48276			3 d	jo or 2 d _{inax}	2d50 or 1.5d	- (1	1740 - AC	9
28								max		
	D50 =	0.11	ft	D50 of ripra	ар 🗀	Fia	ure 10.1. Profile	of Riprap Basi	n	
30										
			50 >= 2 and		>= 0.1.					
	D50/ye =	0.37931		OK						
	g =	32.2	tt/s2							
	hs/ye =	0.928133	0							
	hs =	0.269159		scour depth	1					
	hs/D50 =	2.446896	>=2.0	OK						
37	2) Cime 44	haain								
	3) Size the		0.00	£1		De al 1 11				
		10*hs =	2.69		uissipator	Pool Length	1			
	Lsmin =	3Wo =	30	π						
41	Lb =	15bc -	104	ft	Total Dack	lonath				
	Lb = Lbmin =	15hs = 4Wo =	4.04 40		Total Pool	Length				
	Lomin = La =				th					
	La = Wb =	10 10		Apron Leng		ottom donth				
45	vvD –	10	IL .	maintaining	channel D	uttorn depth	I			
40										

Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Offsite Drop Structure Chappel Section 1 Into Basir

	Offsite Drop Structure Channel Section 1 Into Basin											
	A	В	С	D	E	F	G	H	1	l	J	
47	Hydraulic	: Jump					·		I		·	
48	From Dra	inage Design	Manual for	Maricopa C	ounty, Hydra	aulics: Hy	/draulic Stru	uctures, 2	003			
49	Y1 =	0.29 1			normal depti							
50	Ydn =	10 1	ft		am normal (
51	Q =	25 (cfs	flow throug		•						
52]g =	32.2 f			,							
53	A1 =	3.14 f		area of flow	v through th	e drop						
54	A2 =	10.43 f			v in next sec							
55	z =	2.5 f		sideslope I								
56	b =	10 f			th of channe		(1) A	(2)	Ū U	ЭВ	2 <u> </u>	
57	1	,					. 55		V1 V1	103	<u>y</u>	
	2) Calcula	te sequant he	eight of ium	า		φ,		$\overline{v_2}$ $\overline{v_2}$ $\overline{v_2}$	\$()~	<u> </u>		
59	9 Equation 7.2											
60		1	[(]	<u>, 1</u>			v ₁ (P)	_ ⁽²⁾ T	<	$\mathbf{\hat{l}}$ (२	
61		$Y_2 = \frac{1}{2}$	$Y_{1} \left(1 + 8F_{r1}^{2} \right)$	$)^{2} - 1$				y ₂		(C 2 2 2 -	- y ₂	
62		2					y1		v ^y 1			
	Y2 =	0.96 f	ft	ОК	height of jui	mn	₽ <u></u>	~ 2		·		
64		0.001		on	fielgint of jui		С			D		
L	Figure 6.10. Hydraulic Jump Types Sloping Channels (Bradley, 1961) 3) Another check on sequant height of jump.											
66	Use Fig. 7		quantinoigh	t or jump.								
67	000 .g. /		√=	7.96	ft/s							
	Fr1 =	**	op width =	11.46								
69			/m =	0.27		= flow a	ea / top wid	1th				
70			-r1 =	2.68	it.	– now a	ear top wit					
71	•	· ·		2.00								
72	$J = Y2 / Y^{-1}$	1		t = b/(zy1)								
	J =	3.1		t =	13.79							
74	Y2 =	0.899 f	't		height of jur	mn						
75				dee la gel	noight of jui	np						
	1) Calcula	te depth at be	ainnina loc:	ation of ium	n							
77	Equation 7	.3										
78		ZY_1^3 Z	$ZY_1^2 \cup Q$	ZY_2^3 b	$Y_{2}^{2} Q$							
79		3+-	$\frac{1}{2} + \frac{1}{gA_1}$	$=\frac{-2}{3}+-$	$\frac{1}{3} + \frac{1}{gA_2}$							
80			- 511		$5 \delta^{\prime 1}2$							
	Leq =	0.373 F	Rea =	0 375	(Plug in v	alues for	Y2 until bo	th sides o	(Isun			
	Yb =	0.29 ft		OK 0.070	depth at jur	nn locatic	n and bu		quarj			
83		0.20	•	U.V.	aoptiratjan	ip loodic						
	4) Calculat	te length of ju	imp.									
	Use Fig. 7		imp.									
	Lj / y1 =	33										
	Lj =	9.57 ft	t	= jump leng	ith							
88	J	0.07 11	•	Jamb iong	j., (
89	Therefor	e: Min. Lengtl	h of iumn =	30	ft							
90	THEFEIOF	Min. Length		10		•						
90		Total Length		40								
31		i otai Lengti	i ui uasiii -	40	1 L							

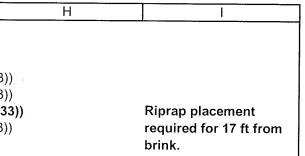
Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Offsite Drop Structure Channel Section 6

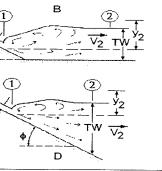

1 Riprap Basin Sizing		A	В	С	D	E	F	G	Н	1	J	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	_		_L		I	<u> </u>	L	l'	V	
$3 \ Oc^{-1}$ B0 of sflow rate for section 6, just before brink of drop $4 \ Vallow 4 3.9 \ W' velocity for section 5, past drop6 \ Wo^{-1}10 ft6 \ Wo^{-1}10 ft6 \ Wo^{-1}10 ft7 \ Wo^{-1}10 ft7 \ Wo^{-1}10 ft7 \ Wo^{-1}10 ft7 \ Wo^{-1}10 ft1 \ Get initial velocity (vo), depth (vo), and Froude Number (Fr) for brink conditions1 \ Wo^{-1}12 for yee1 \ Wo^{-1}2.96 Froude number for drop12 \ Vo^{-1} \ Ye^{-1}2.96 Froude number for drop13 \ Vo^{-1}2.96 ft12 \ Setect trial DS0 and obtain hskye from Equation 10.1.13 \ Vo^{-1}\frac{1}{\mu_{e}} = 0.86 \left(\frac{D \cdot y}{\mu_{e}}\right)^{0.5} \left(\frac{V}{\sqrt{g} y_{e}}\right) - C_{e}22 \ Get tailwater parameter Co:\frac{1}{\mu_{e}} = 0.86 \left(\frac{D \cdot y}{\mu_{e}}\right)^{0.5} \left(\frac{V}{\sqrt{g} y_{e}}\right) - C_{e}22 \ DS0 = 0.25 \ ftD50 of riprap32 \ DS0 = 0.25 \ ftD50 of riprap33 \ ps^{-2} = 3.2 \ Mis234 \ hslye = 1.04337633 \ ps^{-2} = 3.2 \ Mis233 \ hslye = 1.04337635 \ hs^{-2} = 0.060 \ ft36 \ hslybolog = 2.42224 >= 2.0 \ OK37 \ rots = 10^{11} \ ho^{-1} \ Aron Length39 \ hs^{-2} = 10^{11} \ Aron Length41 \ hslye = 10 \ ft42 \ b = 10^{11} \ Mon For the rots work work work work work work work work$	-		on orang									
	-	0-	0/) of s	flow rate fo	r contion C	just before	brink of d	2			
5TW=1.36 ftnormal depth for section 5, past drop6Wor10 ftchannel bottom width7From FHWA Hydraulic Design of Energy Dissipators for Culvents and Channels, July 20061010 set intial velocity (Vo), depth (yo), and Froude Number (Fr) for brink conditions11From Flowmaster output files:12yoe yoe0.58 ft13by yee0.26 ft14Fra2.9615Stelect trial D50 and obtain hslye from Equation 10.11617Equation 10.117Equation 10.1 $\frac{h_{y}}{y_{y}} = 0.86 (\frac{D_{xy}}{y_{y}})^{-S} (\frac{y_{x}}{\sqrt{y_{y}}}) - C_{x}$ 18Equation 10.1 $\frac{h_{y}}{y_{y}} = 0.86 (\frac{D_{xy}}{y_{y}})^{-S} (\frac{y_{x}}{\sqrt{y_{y}}}) - C_{x}$ 17Equation 10.1 $\frac{h_{y}}{y_{y}} = 0.86 (\frac{D_{xy}}{y_{y}})^{-S} (\frac{y_{x}}{\sqrt{y_{y}}}) - C_{x}$ 18Equation 10.1 $\frac{h_{y,y}}{y_{y}} = 0.86 (\frac{D_{xy}}{y_{y}})^{-S} (\frac{y_{x}}{\sqrt{y_{y}}}) - C_{x}$ 19Co =1.1 tributy e < 0.75	-							DHINK OF GEO	h			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4										
7 1From FHWA Hydraulic Design of Energy Dissipators for Culverts and Channels, July 200691) Get Intial velocity (Vo), depth (yo), and Froude Number (Fr) for brink conditions10From Flowmaster output files: 12 yoer yee12 yoer yee0.58 ft13 Voe12.05 ft/s14 Fre2.9615Froude number for drop1516162) Select trial DS0 and obtain hsiye from Equation 10.1.17Equation 10.116 $h_{r_{e}} = 0.86 (\frac{D_{eq}}{P_{e}})^{4/3} (\frac{V_{g}}{Q_{e}}) - C_{e}$ 12Coe1.4 if TWiye < 0.75	—	4					on 5, past di	rop				
Image: Some FHWA Hydraulic Design of Energy Dissipators for Culverts and Channels, July 2006 1) Get initial velocity (Vo), depth (yo), and Froude Number (Fr) for brink conditions 10 From Flowmaster output files: 12 yo= yee 0.56 ft 13 Vo= 1.05 ft/s velocity for drop 14 Free 2.66 Froude number for drop 15 Equation 10.1		vvo=	1(л	channel bo	ttom width						
Image: Section of the sector of the secto					_							
10 From Flowmaster output files: 12 yoe yee 0.58 ft normal depth for drop 13 Yoe 12.05 ft/s velocity for drop 14 Fre 2.36 Froude number for drop 15 16 2) Select trial D50 and obtain hs/ye from Equation 10.1. 16 13 Equation 10.1 $\frac{h_r}{r_r} = 0.86 \left(\frac{D_{sy}}{y_r} \right)^{0.55} \left(\frac{V_s}{\sqrt{gy_r}} - C_s \right)^{-1/2}$ 21 Cet tailwater parameter Co: Co 1.4 if TW/ye < 0.75	-											
11 From Flowmaster output files: 12 yo= ye= 0.58 ft normal depth for drop 14 Fr= 2.96 Froude number for drop 15 Solution 10.1 $\frac{h_{z}}{P_{z}} = 0.86 \left(\frac{D_{su}}{P_{z}} \right)^{-1.3} \left(\frac{V_{z}}{\sqrt{g_{z}}} - C_{a} \right)^{-1.3}$ 16 2) Select trial D50 and obtain hs/ye from Equation 10.1. 17 Equation 10.1 $\frac{h_{z}}{P_{z}} = 0.86 \left(\frac{D_{su}}{P_{z}} \right)^{-1.3} \left(\frac{V_{z}}{\sqrt{g_{z}}} - C_{a} \right)^{-1.3}$ 21 Get tailwater parameter Co: $v_{s} = \sqrt{v_{s}} + \sqrt$		1) Get intia	al velocity ('	Vo), depth (y	o), and Frou	de Number	(Fr) for brinl	k conditions	;			
12 you												
13 Voc 12.05 ft/s velocity for drop 15 Froude number for drop 16 2) Select trial D50 and obtain hs/ye from Equation 10.1. 17 Image: The trial D50 and obtain hs/ye from Equation 10.1. 18 Equation 10.1 $h_{f_{r}} = 0.86 \left(\frac{D_{s_{0}}}{y_{r}} \right)^{-0.53} \left(\frac{y_{s}}{\sqrt{gy_{r}}} - C_{o} \right)$ 21 Get tailwater parameter Co: Image: The trial D50 of triprap Image: The trial D50 of triprap 22 Co = 3 if 1.0 < TW/ye < 1.0 Image: The trial D50 of triprap Image: The trial D50 of triprap 23 D50 = 0.25 ft D50 of triprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Dissipator Pool Length 36 hs/ye = 1.043976 Sourd triprap 37 33 Size the basin 39 Size the basin 38 Ls = 10 ft <td>11</td> <td>From Flow</td> <td>master out</td> <td>put files:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	11	From Flow	master out	put files:								
13 Voc 12.05 ft/s velocity for drop 15 Froude number for drop 16 2) Select trial D50 and obtain hs/ye from Equation 10.1. 17 Image: The trial D50 and obtain hs/ye from Equation 10.1. 18 Equation 10.1 $h_{f_{r}} = 0.86 \left(\frac{D_{s_{0}}}{y_{r}} \right)^{-0.53} \left(\frac{y_{s}}{\sqrt{gy_{r}}} - C_{o} \right)$ 21 Get tailwater parameter Co: Image: The trial D50 of triprap Image: The trial D50 of triprap 22 Co = 3 if 1.0 < TW/ye < 1.0 Image: The trial D50 of triprap Image: The trial D50 of triprap 23 D50 = 0.25 ft D50 of triprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Oxe The triprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Dissipator Pool Length 36 hs/ye = 1.043976 Sourd triprap 37 33 Size the basin 39 Size the basin 38 Ls = 10 ft <td>12</td> <td>yo= ye=</td> <td>0.58</td> <td>3 ft</td> <td>normal dep</td> <td>th for drop</td> <td></td> <td></td> <td></td> <td></td> <td></td>	12	yo= ye=	0.58	3 ft	normal dep	th for drop						
14Fr=2.96Froude number for drop152) Select trial D50 and obtain hs/ye from Equation 10.1.17Equation 10.1 $h_r = 0.86 \left(\frac{D_{sh}}{y_r} \right)^{-0.55} \left(\frac{y_o}{\sqrt{gy_r}} \right) - C_o \right)$ 2122Get tailwater parameter Co:23Co =1.4 if TW/ye < 0.75	13	Vo=	12.05	5 ft/s								
$\frac{15}{12}$ Select trial D50 and obtain hs/ye from Equation 10.1. $\frac{h_{z}}{V_{p}} = 0.86 \left(\frac{D_{z_{0}}}{y_{p}}\right)^{-0.55} \left(\frac{V_{z}}{\sqrt{gy_{p}}}\right) - C_{z}$ Equation 10.1 $\frac{h_{z}}{12} = 0.86 \left(\frac{D_{z_{0}}}{y_{p}}\right)^{-0.55} \left(\frac{V_{z}}{\sqrt{gy_{p}}}\right) - C_{z}$ Co = 1.4.4 if TW/ye < 0.75 22. Co = 1.4.1 if TW/ye < 0.75 23. Co = 3 if 1.0 < TW/ye < 1.0 25. Co = 3 if 1.0 < TW/ye < 1.0 27. TW/ye = 2.344628 29. D50 = 0.25 ft D50 of riprap Boy = 0.431034 > 0.1 OK 33. g = 3.2.2 ft/s2 34. hs/ye = 1.043976 35. hs = 0.605506 ft scour depth 36. hs/D50 = 2.422024 >= 2.0 OK 37. 38. 3) Size the basin 39. Ls = 10 th s = 6.06 ft Dissipator Pool Length 40. Lsmin = 3Wo = 30 ft 41. La = 10 th s = 9.08 ft Total Pool Length 42. Lb = 15 hs = 9.08 ft Total Pool Length 43. Lbmin = 4Wo = 40 ft maintaining channel bottom depth 44. La = 0 ft Apron Length 45. Wb = 10 ft maintaining channel bottom depth 44. La = $\frac{\pi D_{z}^{2}}{4} = y_{w}W_{w}^{2}$ 55. LDE = 2.72 56. LDE L (t) VV/0 (Fig. VI/W) Fig. D50 (ti) 57. 3.673857 10 0.95 11.4475 0.65 58. 7.389714 20 0.75 9.0375 0.53 59. 11.03857 0.30 0.5 6.025 0.24	14	Fr=	2.96	6			a					
16 2 Select trial DS0 and obtain hs/ye from Equation 10.1. 17 18 Equation 10.1 $h_{r} = 0.86 \left(\frac{D_{so}}{y_{r}} \right)^{-0.55} \left(\frac{V}{\sqrt{gy_{r}}} \right)^{-C_{o}}$ 23 Cet tailwater parameter Co: 23 Cet tailwater parameter Co: 24 Ce = 7.77931 if 0.75 TW/ye < 1.0. 26 TWye = 2.344528 26 Figure 10.1. Profile of Riprap Basin Solo = 0.25 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. 20 33 39 32 10.43765 38 33 33 34 30 32 10.43765 34 33 35 30 30 <td cols<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td> <td></td> <td></td>							F				
$\frac{17}{18} Equation 10.1 \qquad \qquad$		2) Select to	rial D50 and	d obtain hs/v	e from Fouat	ion 10 1		•				
Image: Sequence of the second sec												
13 y. (y. (y. <th)< th=""> (y. (y.<!--</td--><td></td><td>Faultion 1</td><td>0.1 h</td><td>(D.,</td><td>$)^{-0.55} (V)$</td><td></td><td></td><td></td><td></td><td></td><td></td></th)<>		Faultion 1	0.1 h	(D.,	$)^{-0.55} (V)$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-930.001				$= -C_o $						
21 22 Get tailwater parameter Co: 23 Co = 1.4 if TW/ye < 0.75			\mathcal{Y}_{e}	(Ye	$\int \sqrt{gy}$,)						
	20				\							
23 Co = 1.4 if TW/ye < 0.75		Cot toil	or porcest	or Co:			-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•				•			CHANNEL		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						У ₀ = У	'e	-				
²⁶ ²⁷					*	H<		<u> <u> </u></u>		22		
27 TW/ye = 2.344828 1 dig or 1.5 dig		Co =	3	3 if 1.0 < TW	ye		ye	TW	Land	YB	3	
28 D50 = 0.25 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. So 0/44 = 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. OK 32 D50/ye = 0.431034 >= 0.1 OK 33 g = 32.2 ft/s2 34 hs/ye = 1.043976 35 hs = 0.605506 ft scour depth 36 hs/D50 = 2.422024 >= 2.0 OK 37 33 Size the basin 39 39 Ls = 10*hs = 6.06 ft Lsmin = 3Wo = 30 ft 41 41 42 42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 43 Las = 10 ft maintaining channel bottom depth 44 44 La = 10 ft maintaining channel bottom depth 45 Wb = 10 ft maintaining channel bottom depth 46 4) Assess need for downstream riprap due to TW/ye >0.74 4 $= \pi D_$									C. C			
28 D50 = 0.25 ft D50 of riprap Figure 10.1. Profile of Riprap Basin 30 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. Figure 10.1. Profile of Riprap Basin 32 D50/ye = 0.431034 >= 0.1 OK 33 g = 32.2 ft/s2 hs/ye = 1.043976 34 hs/ye = 1.043976 sour depth 35 hs = 0.605506 ft sour depth 36 ns/ye = 1.043976 sour depth 35 hs = 0.605506 ft sour depth 36 1055 = 2.422024 >= 2.0 OK 37 38 3) Size the basin 30 ft 40 Lsmin = 3Wo = 30 ft 41 41 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A $		TW/ye =	2.344828	3		3 45	n or 2 dimax	2/10/01/15/		150 - 1CE	a a	
Figure 10.1. Promis of Kiprap dasin Figure 10.1. Promis of Kiprap dasin Signe 10.43976 Signe 10.430976 Signe 10.75 Signe 2.422024 >= 2.0 OK 30 Size the basin Signe 10.16 ft Lissipator Pool Length Add to ft A signe 10 downstream riprap due to TW/ye >0.74 A signe	28							2050 41 1.50	max			
Figure 10.1. Promis of Kiprap dasin Figure 10.1. Promis of Kiprap dasin Signe 10.43976 Signe 10.430976 Signe 10.75 Signe 2.422024 >= 2.0 OK 30 Size the basin Signe 10.16 ft Lissipator Pool Length Add to ft A signe 10 downstream riprap due to TW/ye >0.74 A signe		D50 =	0.25	i ft	D50 of ripra	ар Ц		- 10 1				
31 Check to see that hs/D50 >= 2 and that D50/ye >= 0.1. 32 D50/ye = 0.431034 >= 0.1 OK 33 g = 3.22 ft/s2 34 hs/pe = 1.043976 35 hs = 0.605506 ft scour depth 36 scour depth 37 37 38 3) Size the basin 32 Ls = 10*hs = 6.06 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 La = 10 ft Apron Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 Vb = 5.8 Scourd equivalent circular diameter, De, for brink area 51 De = 2.72 Scourd equivalent circular diameter, De, for brink area 52 Sa Rock size for riprap after energy dissipators - Equation 10.6 53 Sock size for riprap after energy dissipators - Equation 10.6 $D_{30} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 54 S = 2.64 specific gravity of rock $D_{30} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 55 L/De L (ft) 10.39 VI (ftys) D50 (ft) 58<					•		Figu	ire 10.1. Profile	or Riprap Basin			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Check to s	ee that hs/l	D50 >= 2 and	I that D50/ve	>= 0.1.						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			011							
$\frac{35}{36} \text{ hs} = 0.605506 \text{ ft} \text{ scour depth} \\ \text{hs/D50} = 2.422024 >= 2.0 \text{ OK} \\ 37 \\ 37 \\ 38 \text{ 3} \text{ Size the basin} \\ 39 \text{ Ls} = 10^{\text{h}\text{hs}} = 6.06 \text{ ft} \text{ Dissipator Pool Length} \\ 40 \text{ Lsmin} = 3Wo = 30 \text{ ft} \\ 41 \\ 42 \text{ Lb} = 15\text{ hs} = 9.08 \text{ ft} \text{ Total Pool Length} \\ 43 \text{ Lbmin} = 4Wo = 40 \text{ ft} \\ 44 \text{ La} = 10 \text{ ft} \text{ Apron Length} \\ 44 \text{ Vb} = 10 \text{ ft} \text{ maintaining channel bottom depth} \\ 46 \\ 47 \text{ 4} \text{ Assess need for downstream riprap due to TW/ye > 0.74} \\ 48 \text{ Using Figure 10.3} \\ 10 \text{ compute equivalent circular diameter, De, for brink area} \\ 50 \text{ A}^{\text{a}} = 5.8 \\ 51 \text{ De} = 2.72 \\ 52 \\ 53 \text{ Rock size for riprap after energy dissipators - Equation 10.6} \\ 5 = 2.64 \text{ specific gravity of rock} \\ 55 \\ 56 \\ 56 \\ 57 \\ 3.673857 \\ 10 \\ 0.95 \\ 11.03957 \\ 30 \\ 0.5 \\ 59 \\ 11.03957 \\ 30 \\ 0.5 \\ 60 \\ 14.71943 \\ 40 \\ 0.4 \\ 4.82 \\ 0.15 \\ \end{array}$												
36 hs/D50 = 2.422024 >= 2.0 OK 37 3) Size the basin 3) 3) Size the basin 38 LS = 10*hs = 6.06 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 Lb = 15hs = 9.08 ft Total Pool Length 42 Lb = 15hs = 9.08 ft Total Pool Length 44 La = 10 ft Apron Length 44 La = 10 ft Maintaining channel bottom depth 46 Vib = 10 ft maintaining channel bottom depth 47 4) Assess need for downstream riprap due to TW/ye >0.74 Image: State		-			scour denth	h						
37 38 3) Size the basin 39 Ls = 10*hs = 6.06 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 41 42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_a W_a$ 50 A = 5.8 5.8 51 De = 2.72 $De = 2.72$ 52 S 2.64 specific gravity of rock $D_{s0} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 55 V/Vv (Fig. VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15						1						
38 3) Size the basin 39 Ls = 10*hs = 6.06 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41 42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A = 5.8$ 51 De = 2.72 52 Se = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 Rock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) VI/Vo (Fig. D50 (ft) 57 3.679857 10 0.95 11.4475 58 7.359714 20 0.75 9.0375 59 11.03957 30 0.5 6.025 60 14.71943 40 0.4 4.82 <t< td=""><td></td><td>13/00/</td><td>2.722024</td><td>-2.0</td><td>UN</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		13/00/	2.722024	-2.0	UN							
39 Ls = 10*hs = 6.06 ft Dissipator Pool Length 40 Lsmin = 3Wo = 30 ft 41		3) Siza tha	basin									
40 Lsmin = 3Wo = 30 ft 41 42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o^2$ 50 A = 5.8 51 De = 2.72 52 53 Rock size for riprap after energy dissipators - Equation 10.6 54 S = 2.64 specific gravity of rock 55 55 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.65 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15 <td></td> <td>•</td> <td></td> <td>6.00</td> <td>: f+</td> <td>Dissinctor</td> <td>Dool Longet</td> <td></td> <td></td> <td></td> <td></td>		•		6.00	: f +	Dissinctor	Dool Longet					
41 42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 A = 5.8 51 De = 2.72 52 53 Rock size for riprap after energy dissipators - Equation 10.6 $D_{s0} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15						ussipator I	-001 Length					
42 Lb = 15hs = 9.08 ft Total Pool Length 43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 40 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_c^2}{4} = y_o W_o$ 50 A = 5.8 51 De = 2.72 52 53 Rock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) VI/Vo (Fig. D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15		Lsmin =	3000 =	30	i it							
43 Lbmin = 4Wo = 40 ft 44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A = \frac{\pi D_c^2}{4} = y_o W_o$ 50 A = 5.8 $A = 5.8$ 51 De = 2.72 $A = \frac{\pi D_c^2}{4} = y_o W_o$ 52 S Rock size for riprap after energy dissipators - Equation 10.6 54 S = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15			4 5 1 .			- -						
44 La = 10 ft Apron Length 45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A = 5.8$ 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_c^2}{4} = y_o W_o$ 50 $A = 5.8$ $De = 2.72$ 52 Bock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 Rock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15						i otal Pool I	ength					
45 Wb = 10 ft maintaining channel bottom depth 46 47 4) Assess need for downstream riprap due to TW/ye >0.74 48 Using Figure 10.3 $A = \frac{\pi D_e^2}{4} = y_o W_o$ 49 Compute equivalent circular diameter, De, for brink area $A = \frac{\pi D_e^2}{4} = y_o W_o$ 50 A = 5.8 51 De = 2.72 52 S Cock size for riprap after energy dissipators - Equation 10.6 54 S = 2.64 specific gravity of rock 55 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g} \right)$ 56 L/De L (ft) 10.3) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15												
$\frac{46}{47}$ 4) Assess need for downstream riprap due to TW/ye >0.74 $\frac{48}{49}$ Using Figure 10.3 $\frac{49}{50}$ Compute equivalent circular diameter, De, for brink area 50 $A = 5.8$ 51 $De = 2.72$ 52 $Be = 2.72$ 53 Rock size for riprap after energy dissipators - Equation 10.6 54 $S = 2.64$ specific gravity of rock 55 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.33 VI (ft/s) 57 3.679857 10 0.95 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15												
474) Assess need for downstream riprap due to TW/ye >0.7448Using Figure 10.349Compute equivalent circular diameter, De, for brink area50A =51De =522.72525354S =552.64 specific gravity of rock56L/DeL (ft)573.6798575911.039575911.039575911.03957500.535911.039575011.039575011.0395750		Wb =	10	ft	maintaining	channel bo	ottom depth					
48 49 50 50 51 52 52 53 54 55Using Figure 10.3 Compute equivalent circular diameter, De, for brink area 5.8 De = 5.8 52 53 54 55 $A = 5.8$ 5.7 56 $A = 2.72$ $A = 2.72$ 53 54 55Be = 2.72 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 54 55S = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 57L/De 56L/De 1.03957VI/Vo (Fig. 10.0395759 5911.039570.550.5359 5911.03957300.560 5914.71943400.44.820.150.15												
49 Compute equivalent circular diameter, De, for brink area $A = \frac{D_e}{4} = y_o W_o$ 50 A = 5.8 51 De = 2.72 52 Rock size for riprap after energy dissipators - Equation 10.6 54 S = 2.64 specific gravity of rock 56 L/De L (ft) 57 3.679857 10 0.95 58 7.359714 20 0.75 59 11.03957 30 0.5 60 14.71943 40 0.4				wnstream rip	rap due to T	W/ye >0.74						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							πD^2					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ircular diame	ter, De, for b	rink area	$A = \frac{nD_e}{n}$	$-= y_{1}W_{1}$				
51 De = 2.72 52 53 Rock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 53 S = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15		•	•				4	20.0				
52 S Rock size for riprap after energy dissipators - Equation 10.6 $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 54 S = 2.64 specific gravity of rock $D_{50} = \frac{0.692}{S-1} \left(\frac{V^2}{2g}\right)$ 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15												
53 Rock size for riprap after energy dissipators - Equation 10.6 54 S = 2.64 specific gravity of rock 55 VI/Vo (Fig. 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15		-										
55 VI/Vo (Fig. 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15		Rock size f	or rinran of	ter enerav di	ssinatore - E	ouation 10 4	3 0	$692 (V^2)$				
55 VI/Vo (Fig. 56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15						40000110.0	$D_{50} = -$					
56 L/De L (ft) 10.3) VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15		0 -	2.04	specific yrav	INCY OF TOOK			S-1 (2g)	Л			
56 L/De L (ft) 10.3 VI (ft/s) D50 (ft) 57 3.679857 10 0.95 11.4475 0.86 58 7.359714 20 0.75 9.0375 0.53 59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15					T	1		· · · · · · · · · · · · · · · · · · ·	<u> </u>			
573.679857100.9511.44750.86587.359714200.759.03750.535911.03957300.56.0250.246014.71943400.44.820.15	50	L /D -	1 /4->									
587.359714200.759.03750.535911.03957300.56.0250.246014.71943400.44.820.15												
59 11.03957 30 0.5 6.025 0.24 60 14.71943 40 0.4 4.82 0.15												
60 14.71943 40 0.4 4.82 0.15												
61 17.29533 47 0.36 4.338 0.12 Riprap placement required for 47 ft from brink.												
	61	17.29533	47	0.36	4.338	0.12	Rip	rap placem	ent required	l for 47 ft fr	om brink.	

Cholla Ash Monofill Riprap Basin Sizing and Hydraulic Jump Offsite Drop Structure Channel Section 6

					op Structure	0.10.110.0	bollon o				
	A	В	С	D	E	F	G	Н	I	J	
62	Hydraulic	Jump				-	-				
63	From Drair	age Desigr	Manual for	Maricopa C	ounty, Hydr	aulics: Hydi	aulic Struct	ures, 2003			
	Y1 =	0.58			normal dept						
65	Ydn =	1.36	ft		am normal						
66	Q =		cfs		gh the drop						
	g =		ft/s2		gir the drop						
	A1 =	6.64		area of flo	w through th	ne dron					
	A2 =	18.22			w in next se						
	z =	2.5		sideslope							
	2 = b =	2.0		•	th of chann	a.	(1) A	$\langle \widehat{2} \rangle = \langle \widehat{1} \rangle$	В	(2)	
72	– u	10	11	DOLION WIL			1	V1 V1		T 1/2	
						4	105	. V2 Y2 +		V2 TW +	
			eight of jump	ο.			/ ┝───L-	+			
14											
75		$Y_{2} = \frac{1}{2}$	$Y_{\rm I} \left \left(1 + 8F_{r1}^2 \right) \right $	$)\bar{2} - 1$			X 3 J	- y ₂			
76		2	-1 (- · · · - r	/ -		¥1				- ₩ 	
77		L]			*	$\overline{v_2}$	¢	$\overline{V_2}$	
	Y2 =	2.15	ft	OK	height of ju	imp		ו	D	<]	
79						L	Figure 6.10. Hydrau	lic Jump Types Stoping	Channels (Bradley, 1	961)	
			equant heigh	t of jump.							
	Use Fig. 7-										
82	Г		V=	12.05	ft/s						
	Fr1 =	<u></u>	top width =	12.90	ft						
84		$\sqrt{gy_m}$	ym =	0.51	ft	= flow are	a / top width	ł			
85		V 85 m	Fr1 =	2.96							
86						-					
87	J = Y2 / Y1			t = b/(zy1)							
88	J =	3.5		t =	6.90						
89	Y2 =	2.03	ft	use larger	height of ju	mp					
90				0	0 ,	•					
91	1) Calculate	e depth at b	eginning loc	ation of jum	p.						
	Equation 7.										
93		ZY_1^{3}	$ZY_1^+ \perp Q$	$-\frac{ZY_2^3}{2}+b$	$PY_2^2 \downarrow Q$						
94		3	$\frac{1}{2} \int \frac{1}{gA}$	3	$3 + \frac{1}{gA_2}$						
95			0-1	-	02						
	Leq =	0.957	Reg =	0.959	(Plua in v	values for Y	2 until both	sides equal)			
the state of the s	Yb =	0.47		OK	depth at ju						
98					1)						
	4) Calculate	e lenath of i	ump.								
	Use Fig. 7-										
	Lj / y1 =	55									
	Lj =	31.9	ft	= jump len	ath						
102	-,	01.0		Jamp Ion	9						
103	Therefore	Min Lenc	th of jump =	32	ft						
105	mereiule	-	h of apron =	32 10							
105			th of basin =	42							
100				42 47		(from briel)	of dran)				
107	TOTALLE	ngui or requ	uired riprap=	4/	п	(from brink	or arop)				

				Riprap	Cholla Ash Sloping Drop Sizing and Hydra	Structure	Formulas			
	A	В		С	D	E	F		G	
	Riprap Basin Sizing									,
2	Q=	00								
4	Vallow=	80 4.39	•	cfs			ust before brink of d	rop		
5	TW=	1.36		ft/s	velocity for s					
6	Wo=	10		ft			n 5, past drop			
7	100-	10		ft	channel bott	om w				
8 9 10	1) Get intial velocity (∨	c Design of Energy Dissipators for Culverts /o), depth (yo), and Froude Number (Fr) for	and Channels, brink condition	July 2006 s						
	From Flowmaster outp									
	yo= ye=	0.58		ft	normal depth					
	Vo= Fr=	12.05		ft/s	velocity for d					
14		2.96			Froude num	ber for drop				
	2) Select trial D50 and	obtain hs/ye from Equation 10.1.			ſ					
	Equation 10.1 $\frac{h_s}{y_e}$ =	$= 0.86 \left(\frac{D_{50}}{y_e}\right)^{-0.55} \left(\frac{V_o}{\sqrt{gy_e}}\right) - C_o$				y _o =y _e ⊢=====				CHANN
22	Get tailwater paramete					ye ye		<u>.</u>		VB
23		1.4		if TM/wo <	0.75	- A		-OF		
		=4*B5/B12-1.6		if TW/ye < if 0.75 < TV		≯ 3 d ₅₀ or 2				84
		3		if 1.0 < TW		JU -	- hax · 205) er 1.5d _{-máx}		
26		=B5/B12		11 1.0 - 1 1 1	,ye L		Figure 10.1. I	Profile of F	Riprap Basin	
	D50 =	0.25		ft	D50 of riprap					
	Check to see that hs/D	/50 >= 2 and that D50/ye >= 0.1.								
32		=B29/B12		>= 0.1	ОК					
33	q =	32.2		ft/s2	UK					
34		=0.86*((B32)^(-0.55))*(B14)-B25		10.52						
35		=B34*B12		ft	scour depth					
	hs/D50 =	=B35/B29		>=2.0	OK					
37										
	Size the basin									
		10*hs =		=10*B35	ft	Dissipa	ator Pool Length			
	Lsmin =	3Wo =		=3*B6	ft		Ŭ			
41										
		15hs =		=15*B35	ft	Total P	ool Length			
		4Wo =		=4*B6	ft					
		=C43-C40		ft	Apron Length					
45	Wb =	10		ft	maintaining cl	hannel botto	om depth			
47	4) Assess need for dow Using Figure 10.3	vnstream riprap due to TW/ye >0.74 (for Dr			nly)					
		cular diameter, De, for brink area	$A = \frac{\pi D_e^2}{4}$							
50		=B5*B12	$A = -\frac{e}{\Lambda}$	$= y_o W_o$						
51		=(B50*4/PI())^0.5	L4							
52										
	Rock size for riprap aft						0.692(V^2		
54		=165/62.4		000	ecific gravity of ro	D	$P_{eo} =$	<u> </u>		
55				spe	For gravity of ro	JUK	S - 1	2g]		
۰					· · · · · · · · · · · · · · · · · · ·					


P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Hydraulics\Riprap Basin Sizing-Hydraulic Jump\Riprap Basin Sizing



2/13/2009

Cholla Ash Monofill Sloping Drop Structure

		· •	Ripr	ap Sizi	ng and Hydraulic	Jump F	ormulas			
	Α	В	C		D	E		F	G	
56	L/De	9	L (ft)	o (Fig. 10.3)	VI (ft/s) D50 (ft)			
57	=B57/\$B\$51	10	0.42		=C57*\$B\$13			1))*((D57^2)/(2*'Drop Off-basii	n'!\$B\$33))
58	=B58/\$B\$51	15	0.4		=C58*\$B\$13				2*'Drop Off-basii	
59	=B59/\$B\$51	17	0.38		=C59*\$B\$13				2*'Drop Off-bas	
	=B60/\$B\$51	20	0.3		=C60*\$B\$13				2*'Drop Off-basir	
61										
	Hydraulic Jump									
63	From Drainage Desig	n Manual for Maricopa County, Hydraulics: Hydra	ulic Structures, 2003							
	Y1 =	0.58	ft		upstream normal					
	Ydn =	1.36	ft		downstream no		oth section	on 5		
	Q =	80	cfs	1	flow through the o	b				
67		32.2	ft/s2							
	A1 =	6.64	ft2		area of flow throu					
	A2 =	10.43	ft2		area of flow in ne	xt sectio	n			
	Z =	2.5	ft		sideslope H:1		Γ		A	
71 72	b =	10	ft	ł	bottom width of c	hannel		V. (1)		$2 \sim 10^{\circ}$
	2) Coloulate assumed	a similar of issues							557	
73	2) Calculate sequant I	leight of jump.							V2	2 4/
74	Equation 7.2	$1 \left[\left(\begin{array}{c} -x \right)^{\frac{1}{2}} \right]$						У ₁ ́	L	4
75		$Y_{2} = \frac{1}{2}Y_{1} \left[\left(1 + 8F_{r1}^{2} \right)^{\frac{1}{2}} - 1 \right]$						V1 (1)	2 7	v_1
70									5) ' ¥2-	T 📉
	Y2 =		<i>c</i> ,		214			y ₁	<u>, , , , , , , , , , , , , , , , , , , </u>	
79	12 -	=0.5*B64*(((1+8*(D85^2))^0.5)-1)	ft	C	ЭК	height			$\overline{V_2}$	
	3) Another check on s	equant height of jump.							>	t
81	Use Fig. 7-8	equalit height of jump.					L	Figure	5.10. Hydraulic Jump T	ypes Sloping C
82	V		V=	_	=B66/B68	ft/s				
	$Fr1 = \left \frac{V}{\Gamma} \right $		top width		-800/808	ft				
84	$\sqrt{gy_m}$		ym =		=B68/D83		= flow are	ea / top width		
85			Fr1 =		=D82/SQRT(B67*		now are			
84 85 86			, , , ,			504/				
87	J = Y2 / Y1			t	= b/(zy1)					
88 .		3.5			=	=B71/(F	70*B64)			
89	Y2 =	=B88*B64	ft			height c	,			
90				ŭ			. 1200 P			
	1) Calculate depth at b	beginning location of jump.								
	Equation 7.3									
93	ZY_1	$\frac{3}{2} + \frac{ZY_1^2}{ZY_1} + \frac{Q}{Z} = \frac{ZY_2^3}{ZY_2^3} + \frac{bY_2^2}{ZY_2} + \frac{Q}{Z}$								
94	3	$-+\frac{1}{2}+\frac{1}{gA_1}-\frac{1}{3}+\frac{1}{3}+\frac{1}{gA_2}$								
95	L									
96 [Leq =	=(B70*(B64^3)/3)+(B70*(B64^2)/2)+(B66/(B67*B	68)) Req =	=	(B70*B97^3/3)+(B71*B97	7^2/3)+(B	66/(B67*B69))		(Plu
97	Yb =	0.44	ft				jump loc:			unti
98				•						unu
	4) Calculate length of j	ump.								
	Jse Fig. 7-9									
	_j / y1 =	55								
102 l	_j =	=B101*B64	ft	=	jump length					
103			-		,					
104		Therefor	e: Min. Length of jur	np = 3	2	ft				
105			Min. Length of apr	•		ft				
104 105 106			Total Length of bas			ft				
L						• •				

Channels (Bradley, 1961)

(Plug in values for Y2 until both sides equal)

2/13/2009

OFF-SITE CHANNEL

CULVERT AND WEIR CALCULATIONS

P:\WRES\Arizona_Public_Service\23445548_Cholla_Ash Monofill APP\Channel Design\Report\Draft Drainage Report.doc

EXHIBIT 4.7-2

URS

CALCULATION COVER SHEET

Client: Arizona P	ublic Service	Project Name:	Cholla Ash Monofill
Project/Calculation	Number: 23445548		
Title: Weir Equat	ion Calculation		
Total Number of Pa	ges (including cover sheet): _6		
Total Number of Co	omputer Runs:		
	chelle C. West, EIT		Date: 2/12/09
			Date:
drainage channel. The inputs were cale Design Basis/Refere	ned as broad crested and have a weir	ched.	
Remarks/Conclusion See attached printou Calculation Approv	its.		
		Project Manager/Date	e
Revision No.:	Description of Revision:	A	pproved by:
		Project Manager/I	Date

	A	Page _ 2 of _ 6
	Project No23445548	Sheet of
Description Weir Calculation - Offsite	Computed by MCW	Date 2-12-09
	Checked by	Date

Reference

Weir 1 (Nor the Weir) elevation - 5081 ft
Depth = 1.07 ft = H
Length = 20 ft = L
Weir Coefficient (Broad (rested Weir) = 2.7 = 0

$$Q = C \times L \times (H)^{3/2} = 2.7 (20) (1.07)^{3/2}$$

 $Q = 59.8 cfs$
 $Q = 60 cfs$

Weir 2 (South Weir) elevation - 5076.03, ft Depth = 0.96 ft = H Length = 20 ft = L Weir Coeff. = d.7 = C $Q = 2.7 (20) (0.96)^{3/2} = 50.8 cfs$ $Q \cong 51 cfs$

- Inputs from Culvert master

Culvert Designer/Analyzer Report South Culvert (Sta. 7+50 to 8+00)

Analysis Co	omponent				
Storm Eve	nt	Design E)ischarge		25.00 cfs
Peak Disch	narge Method: User-Sp	pecified			
Design Dis	charge	25.00 cfs C	heck Dischar	ge	25.00 cfs
Tailwater C	conditions: Constant Ta	ailwater			
Tailwater E	Elevation	N/A ft			
Name	Description	Discharge	HW Elev.	Velocity	
Culvert-1 Weir	1-30 inch Circular Not Considered	25.00 cfs N/A	5,076.99 ft N/A	7.01 ft/s N/A	

Culvert Designer/Analyzer Report South Culvert (Sta. 7+50 to 8+00)

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	5,076.99	ft	Discharge	25.00	cfs
Inlet Control HW Elev.	5,076.47	ft	Tailwater Elevation	N/A	ft
Outlet Control HW Elev.	5,076.99	ft	Control Type	Outlet Control	
Headwater Depth/Height	1.27		· ·		
Grades					
Upstream Invert	5,073.80	ft	Downstream Invert	5,073.70	ft
Length	50.00	ft	Constructed Slope	0.002000	ft/ft
Hydraulic Profile					
Profile CompositeM2Pre	ssureProfile		Depth, Downstream	1.70	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.70	ft
Velocity Downstream	7.01	ft/s	Critical Slope	0.019391	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	5,076.99	ft	Upstream Velocity Head	0.40	ft
Ke	0.50		Entrance Loss	0.20	ft
Inlet Control Properties					
Inlet Control HW Elev.	5,076.47	ft	Flow Control	Unsubmerged	
Inlet Type	Headwall		Area Full	4.9	ft²
К	0.00780		HDS 5 Chart	2	
M	2.00000		HDS 5 Scale	1	
C	0.03790		Equation Form	1	
Y	0.69000				

Culvert Designer/Analyzer Report North Culvert (Sta. 11+00 to 11+50)

Analysis C	omponent				
Storm Eve	nt	Design [Design Discharge		80.00 cfs
Peak Disch	arge Method: User-S	pecified			
Design Dis	charge	80.00 cfs (Check Dischar	ge	80.00 cfs
Tailwater C	onditions: Constant T	ailwater			
Tailwater E	Elevation	N/A ft			
Name	Description	Discharge	HW Elev.	Velocity	
Name Culvert-1	Description 2-30 inch Circular	Discharge 80.00 cfs		Velocity 8.98 ft/s	

Culvert Designer/Analyzer Report North Culvert (Sta. 11+00 to 11+50)

Component:Culvert-1

Culvert Summary					
Computed Headwater Eleva	5,082.07	ft	Discharge	80.00	cfs
Inlet Control HW Elev.	5,081.82	ft	Tailwater Elevation	N/A	ft
Outlet Control HW Elev.	5,082.07	ft	Control Type	Outlet Control	
Headwater Depth/Height	1.63				
Grades					
Upstream Invert	5,078.00	ft	Downstream Invert	5,076.93	ft
Length	50.00		Constructed Slope	0.021400	
Hydraulic Profile			· · · · · · · · · · · · · · · · · · ·		
Profile CompositeM2Pres	sureProfile		Depth, Downstream	2.13	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	2.13	ft
Velocity Downstream	8.98	ft/s	Critical Slope	0.030441	ft/ft
Section			······································		
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	2				-
Outlet Control Properties				<u></u>	
Outlet Control HW Elev.	5,082.07	ft	Upstream Velocity Head	1.03	ft
Ke	0.20		Entrance Loss	0.21	ft
Inlet Control Properties			<u></u>	······	
Inlet Control HW Elev.	5.081.82	ft	Flow Control	N/A	
Inlet TypeBeveled ring, 45° (,		Area Full	9.8	ft²
K	, 0.00180		HDS 5 Chart	3	
Μ	2.50000		HDS 5 Scale	А	
С	0.03000		Equation Form	1	
Y	0.74000				

aecom.com

ecom.com