Agenda Topics

• DRE Mission
• Interconnection Process
 • ACC Interconnection Rules
 • APS Interconnection Requirements
• Inverter Settings
• Where to find Interconnection Information
 • Templates, checklists, & diagrams
DRE’s Mission:

To partner with our customers to sustainably integrate DERs to the distribution grid with a focus on safety, reliability, flexibility, power quality, and customer affordability.
State Level Interconnection Rules & APS Interconnection Requirements Manual Updates/Alignment

• Formal Rules Adopted in February 2020

• APS filed Rev 8.5 of the APS interconnection Manual in July 2020 to Comply with ACC Rule Adoption
 – Updates in Rev 8.5 bring requirements in alignment with State Level Rules
 – https://www.aps.com/dg#Interconnection
 • Under Common Requirements
ACC/APS Interconnection Requirements

• Apply to all systems that interconnect to the grid

• System Categories
 – Exporting Systems
 • PV, Battery, anything that regularly exports to the grid
 – Inadvertent Export Systems
 • Programmed Not to Export, (PV + Inverters/Battery)
 – Non-Exporting Systems
 • Separate Systems, Back Up Only

• Screens for each track to determine if further study is needed
 – 4 Review Tracks based on system size/category
 • Expedited (Inadvertent Export System under 20 kW)
 • Super Fast (Exporting Systems under 20 kW)
 • Fast (Systems between 20 kW and 2 MW)
 • Study Track (Systems over 2 MW)

• APS interconnection requirements
 – Align with Rules
 – Provide more detailed technical and safety requirements
Screens for Systems under 20 kW

- **Screen A**
 - Limits the aggregate generation that can be interconnected to a distribution line without additional study.
 - Under 15% of annual peak load, or
 - Under hosting capacity calculated for that distribution line (whichever is greater)

- **Screen E**
 - Limits the aggregate generation capacity on a single-phase shared secondary to under 75% of the transformer rating without additional study

- **Screen F**
 - Limits the current imbalance of a system connected to a single phase system that is connected to a transformer providing 120/240V secondary service to under 20% of the rating of the transformer between the two sites of the 240 V service.
Navigating the Interconnection Process

DRE Preliminary Project Support

- Recommended for systems over 100 kW
- Pre-Application Report
 - Review of existing information regarding available feeder capacity
- Pre-Application Meeting
 - Discussion of technology/location, project scope, project development support
- Preliminary Engineering Support
- Reach out to your local APS Customer Project Rep or Commercial-Renewables to initiate

Customer Submit Complete Application

- Load Meter or Temp Meter Installed
- Drawings
 - City or AHJ approved drawings

DRE Formal Application Review and Studies

- Application Review
- Drawing Review
- Technical Studies
General Application Review Process for Systems under 20 kW

1. **Customer Application**
2. **Application Completeness Review** (Within 7 Days)
 - Complete
 - Deficient
 - Customer/Installer Make Corrections (Within 30 Days)
3. **Technical (drawing) Review and Screening (A, E, F)** (Within 14 Days)
 - Pass
 - Fail
 - Customer decision to move forward with Supplemental Review, Study Track, or Withdraw application (within 30 days)
4. **Customer System Modifications**
 - Fail
5. **Customer Selects Supplemental Review**
 - Pass
6. **Customer Installation**
General **Installation** Process for Systems under 20 kW

- Customer has 180 days from application approval to PTO
Supplemental Review

- Generally, for systems that fail 1 or more of the technical screens
- General Supplemental Review Process:
Study Track

- Generally, for systems over 2 MW
- Can be used for systems that do not pass technical screening requirements in Levels 1 and 2
- Studies may include (Feasibility, System Impact, Facility). APS will work with Customer on Process.
- General Study Track Process:

 - Pre-Application Meeting for Systems over 100 kW
 - Customer Submit Required docs as indicated by APS in Level 2 review
 - Application Completeness Review (Within 30 days)
 - Set Study Scoping Meeting (Within 21 Days)
 - Provide Applicable Study Agreements and study cost estimates (Within 14 Days)
 - Customer Submit Payments and Required documentation for Applicable Studies
 - Customer/Installer Make Corrections (Within 30 Days)
 - Complete Applicable Studies (Within 45 days)
 - Customer Installation

Or

- Submittal of complete application Track 3 2MW or greater
- Complete Deficient Submittal of complete application Track 3 2MW or greater

• Generally, for systems over 2 MW
• Can be used for systems that do not pass technical screening requirements in Levels 1 and 2
• Studies may include (Feasibility, System Impact, Facility). APS will work with Customer on Process.
• General Study Track Process:
IEEE 1547 Advanced Inverter Standards & Settings

All inverters interconnecting to the APS system should have advanced inverter capability as of publication of Rev 8.3 of the APS Interconnection Requirements.

APS to Determine Settings
- Initial settings will not negatively impact customer performance
- APS advanced inverter policy document
- APS advanced inverter setting sheet
- APS will be implementing IEEE 1547-2018 standard effective Jan. 1, 2022

How Does this Fit within the APS Interconnection Requirements manual?
- Section 8.7(A)(11) Outlines the various capabilities documented within IEEE 1547-2018
- Most/all inverter manufacturers should have Advanced Inverter capabilities – IEEE 1547 compliant inverters
Summary of Resources Available at www.aps.com/dg

- Interconnection Process Guide (What submit/design type)
- Applicant User Guide (PowerClerk)
- Plan Review and Installer Guidelines Checklist
- APS Interconnection Requirements Manual, Rev 8.5
- Supply Side Connection Requirements
- PV & ESS Concept Drawings
- Sample Diagrams
How to navigate the dg site...

2. Ignore top menus. They take you away from dg.
3. Click on Interconnection.
How to navigate the dg site...

5. Scroll down to list at lower left.
7. Scroll through list of documents on right. (Hint: may be more pages of documents. Default only shows 5.)
8. Click on Download below each file you want.
Interconnection Documents and Requirements

APS provides support to customers installing equipment that connects with our grid, such as a solar system, a home battery or other type of generator. We want everything to go smoothly for you and your installer throughout the permitting and installation process. Please review our interconnection standards below — they protect your equipment and our electrical system, and keep everyone safe.

- Residential resources (4)
 - Common requirements (4)
 - Getting started (8)
 - Business resources (5)
 - Business sample design diagrams (4)
 - Business wholesale non-FERC (3)
 - Common documents and resources (10)
 - Residential sample design requirements (9)

- APS Interconnection Requirements
 - Download

- Load Side Connection Requirements
 - Download

- Supply Side Connection Requirements
 - Download
Residential sample design requirements (5)
ESS Metering Isolation Concept Drawing
AC Coupled Config. B-3

For multiple Battery Meters, identify System 1, System 2, etc.
For multiple Battery Meters, identify System 1, System 2, etc.
Questions?
Required Diagrams for PV Systems
(Residential and Small Commercial Larger than 1kW, < 1MW)

- **Residential**
 - Electrical One-Line Diagram*
 - Electrical Three-Line Diagram
 - Site Plan

- **Commercial**
 - Electrical One-Line Diagram
 - Electrical Three-Line Diagram & Three-Line Array
 - Plant Location
 - Site Plan

*APS will not accept copyrighted, proprietary or confidential drawings. Drawings shall be site specific without any extraneous information, and shall be prepared specifically for APS use. All drawings are to be professionally drawn, using only black print on white paper, and shall be in accordance with APS Sample Diagrams. Battery Backup Systems may have other drawing requirements in addition to standard drawings as required by APS.

NOTE: Customer should discuss project plans with APS before designing its DG or purchasing and installing equipment.

Electrical one line diagrams are only required for three phase DG systems.
NOTE: UTILITY HAS 24-HR UNRESTRICTED ACCESS TO ALL PHOTOVOLTAIC SYSTEM COMPONENTS AND SERVICE ENTRANCE.

NOTE: REFERENCE SECTION 301.15 OF THE APS EEMR FOR ELECTRIC METER SEPARATION BETWEEN WATER AND GAS.

NOTE: WORKSPACE IN FRONT OF AC ELECTRICAL SYSTEM COMPONENTS SHALL BE IN ACCORDANCE WITH APS AND NEC REQUIREMENTS. FOR APS REQUIREMENTS, REFERENCE SECTION 300 OF THE APS EEMR AND SECTION 8.2 OF THE APS INTERCONNECTION REQUIREMENTS.

This Sample Drawing is for Illustration purposes only and is not to be used for design or construction. This drawing and its suitability for end-use shall not imply that the Project is being installed to the minimum requirements at time of application to APS. Additional Information may be required.
Example - Residential PV System

ELEVATION VIEW

SERVICE ENTRANCE SECTION

PV SYSTEM DISCONNECT

PV SYSTEM UTILITY DISCONNECT

PV SYSTEM PRODUCTION METER

75" MAX.
48" MIN.

60" MAX.
36" MIN.

75" MAX.
48" MIN.

48" MIN.
Example of PV System Warning Labels

NOTE: Typical APS Equipment Labels Handout is located at www.aps.com/dg. ANSI color standards may be used, but is not required by NEC or APS.
Example of PV System Warning Labels (cont.)

- **Notice**: Dedicated Photovoltaic System Combiner Panel. Do not add loads to this panel.

- **Warning**: A generation source is connected to the supply (utility) side of the service disconnecting means. Follow proper lock-out/tag-out procedures to ensure the photovoltaic system utility disconnect switch is opened prior to performing work on this device.

- **Warning**: Warning: multi power production sources interconnected to this electrical service.

- **Caution**: Dual power sources second source is Photovoltaic System.

- **APS Label for 705.12(D)(2)(3)(d)**

- **Caution**: Do not move breakers or add new circuits without electrical engineer approval.

- **Warning**: Other power source connected is a photovoltaic system. Utility disconnect switch for this source is located approx 40 feet from this location north west side of detached garage.

- **Photovoltaic Power Source Breakers are backfeeding**

- **Breaker has been de-rated per NEC 690.64(b)(2)**

- **Denote location of "utility" (2 of 2) or denote location of critical sub-panel**
Standard APS Interconnection Requirements:

Disconnect Switch (Utility Disconnect): Section 8.2

- Must be locked with an APS Padlock with a 3/8” shank.
- Must be placed in a safe, unobstructed location, available 24/7.
- Shall be installed in accordance with the NEC and APS requirements, and the center of the pivot handle of the switch shall be located between 36” and 60” above grade and include a 36” square clear working space.
- If the Disconnect Switch is not located adjacent to the SES, APS requires a placard at the SES and a placard at the Disconnect with explicit written directions to the location of the other:
Standard APS Interconnection Requirements:

Disconnect Switch (cont.)

Blades

- Shall be de-energized in the open position in accordance with NEC 404.6(C) and OSHA 1926.405(C) (hinged on Inverter Side).

Arc Shields

- Acceptable only if do not impede true visual open. **NOTE:** Arc shields may not be removed in order to verify the visual open.
The “Utility Disconnect Switch” shall be a true visual open disconnect. The **blades, jaws and air gap** between them shall be clearly **visible** when the switch is in the open position.
The photograph depicts the switch in the ON (closed) position. The blades and the jaws are in contact with each other and current can flow through.

Switch handle is in the ON position.

Blades and jaws are in contact.
The photographs above depict the switch in the OFF (open) position. The blades and the jaws are not in contact with each other and are separated by an air gap prohibiting the flow of current through the switch.
"True Visual Open" means having the ability to clearly see the blades, the jaws, and the physical separation (air gap) between them.
Standard APS Interconnection Requirements:

Disconnect Switch (cont.)

Multiple Utility Disconnects
- Multiple systems connected to the service.
- System expansions.
- Properly labeled and contain switch numbers (i.e., 1 of 2, 2 of 2).

Fused Disconnect
- APS requires a fused disconnect ahead of the APS required unfused disconnect to meet fault current requirements (Refer to APS ESRM 800.2).
- Shall be locked by the customer/installer and is not required to meet APS visual open criteria.
Standard APS Interconnection Requirements:

Production Metering

Customer must provide and install, at Customer’s expense, meter sockets and metering cabinets in accordance with APS service standards, in locations acceptable to APS.

- Shall be ring-type. Ring-less is not permitted.
- 36” X 36” working space
- Meter height must be between 48” and 75” from finished grade to the center of the meter socket.
- CT rated production metering sections shall have approved visual open disconnecting means for isolation.
Standard APS Interconnection Requirements:

Production Metering

All CT rated metering enclosures shall have the bus identified with reference to the generation source side prior to metering installation with a permanent marker or temporary tag labeled “Generation Source”.

Pull Section (DO NOT label here)

Load Section (DO NOT label here)
Standard APS Interconnection Requirements:

Production Metering (cont.)

3rd Party Production Metering

- Customer may install 3rd party production meter, if correctly labeled and located on the inverter side of the APS Production Meter.

Multiple Production Metering

- Production Meters shall be properly labeled with meter identification per system (i.e., 1 of 2, 2 of 2).

APS Production Meter labeled “Photovoltaic System Meter” or “Photovoltaic System Dedicated kWH Meter.”

3rd Party Production Meter labeled “Leasing Company PV Production Meter”
Standard APS Interconnection Requirements:

Production Metering (cont.)

- Meter Cover vs. Test Meter
 - Residential customers may verify PV/Solar production with use of a test meter. **Note that flats or jumpers are not permitted.**
 - Additionally, for residential customers, In lieu of providing a Production Meter, Customer may install a commercially available meter cover over the Production Meter Socket.

NOTE: Cardboard is not an acceptable cover material. Cover material shall be fiberglass, plastic, glass or Plexiglas.
ESRM 301.15: ELECTRIC METER SEPARATION BETWEEN WATER AND GAS

- The Production Meter is subject to this requirement.
- Based on the NFPA Gas Code & the Arizona Gas Pipeline Standards
 - Require a 36” radial clearance from a “venting source” of a gas system to any “potential source of ignition.”
 - APS interprets the “potential source of ignition” the edge of the meter panel, and the “venting source” the gas regulator.
 - Working Clearance shall be a minimum of 36” wide. If electric panels extend wider than the 36” minimum, working clearance shall be the width of the entire assembly. Working space extend out from the face of electric meter panel a minimum of 36”.

- Water valves or hose bibs within the 36”X36” Safe Work Area are prohibited.
- Drain pipes or soffits are prohibited above the meter enclosure to ensure the 36”X36” Safe Work Area remains safe and dry.
Standard APS Interconnection Requirements:

The Utility Disconnect Switch and Production Metering Enclosure shall be installed in a Readily Accessible location:

Readily Accessible as defined by APS: Capable of being reached quickly and conveniently on a 24-Hour basis without requiring climbing over or removing obstacles, obtaining special permission, keys or security clearances.

- **Commercial Applications:** If access is restricted for security reasons, subject to APS approval, a lock-box may be provided to gain access to the Utility Disconnect Switch and/or Production Metering as long as the lock box is installed within 36” of the door/gate and located between 36” and 60” from finished grade.

- The Utility Disconnect Switch and/or Production Metering Shall not be:
 1. Located behind an electrically operated gate or door unless the electric operator is backed up by a UPS to ensure it can be operated in the event of a utility power outage.
 2. Installed under a breezeway, patio, porch or any area that can be enclosed.
 3. installed behind a gate, fence, wall or other barrier unless expressly agreed to by APS (we may grant exceptions for Commercial customers).
Supply Side Connection

- Most serious design type because working with unprotected service conductors.
- Allowed per 2011/2014/2017 NEC 705.12 (A):
 - “The output of a utility-interactive inverter shall be permitted to be connected to the supply side of the service disconnecting means as permitted in 230.82(6)” (basically installing a second service per APS ESRM 104.11.2).
- RMC (Rigid Metal Conduit) required between the connection and the fused disconnect.
- Ampere rating of conductors between fused disconnect and connection shall not be less than the ampere rating of the disconnect. Minimum is 60A.
- Neutral to ground bond must be established in the fused service disconnect and tied to GEC.
 - Note that if the SSC is made via a breaker or fused disconnect located within the SES, then the existing N-G bond will suffice (i.e., Solar Ready Panels).
- Fused Disconnect must be adjacent (within 10’) to SES, subject to ESRM 301.12 requirements, NEC 225.32, 230.79(D) & 240.24(B).
- MFG approval in writing or UL field evaluation and certification for SSC is required (i.e., letter of compliance and approval sticker).
Supply Side Connection (cont.)

- No connections allowed inside the APS Sealed CT/Metering Compartments.
- Fused and unfused conductors shall not occupy the same raceway unless they are isolated from each other via a firewall barrier in a manner acceptable to APS.
- *Disconnecting/opening the main breaker will not disconnect the PV system.*
- Warning label shall be located at the main service with the following language:

 ![Warning Label](image)

 - APS will only operate the Photovoltaic System Utility Disconnect Switch, as this is our clearance point.
 - For most applications, APS will require two disconnect switches (exception to this would be an approved “Solar Ready” panel)
Supply Side Connection (cont.)

NOTES:

▲ EQUIPMENT SHALL BE INSTALLED IN ACCORDANCE WITH THE NEC AND
Supply Side Connection (cont.)

EXHIBIT 250.34 Grounding and bonding arrangement for a service with three disconnecting means.
Supply Side Connection – Don’t Do This

Do not remove factory installed conductors.

UL Listing of panel was violated - entire service entrance panel had to be replaced in order to pass city and APS inspections.
APS clarified when PE Stamp and AHJ Permit is required

- For Residential Systems, Electrical drawings stamped by a Professional Engineer (Electrical) registered in the State of Arizona OR may provide a copy of the building permit issued by the AHJ when specifically required by Utility in writing.
- For Commercial Systems, Electrical drawings stamped by a Professional Engineer (Electrical) registered in the State of Arizona.

NOTE: APS may require a copy of the building permit issued by the AHJ when specifically required by Utility in writing.

What to do if an AHJ doesn’t issue a permit for PV/Energy Storage System:

- Once APS approval is granted, in accordance with SB1417, install GF following APS and NEC applicable requirements.
- Sign and provide the “Letter In-Lieu of Electrical Clearance” form to APS.

NOTE: Additional information available per Section 16 of the APS Interconnection Requirements manual.
Battery Back-Up Systems Background

- Sometimes installed in conjunction with Photovoltaic Systems.
- In the event there is an APS outage (planned or unplanned), the customer’s critical loads are powered by the battery back-up system.
- **Opening the Utility Disconnect Switch may not kill all AC power feeding the Home.**
- Customers may opt to activate “Grid-Sell” or “Battery Charger” modes. Either option is acceptable to APS.
- The installation of a bypass switch (manual or automatic transfer switch) is acceptable only if proper warning signs and written procedures/instructions are provided.
- Installer is required to provide operating instructions for proper isolation of AC power to the home, as well as isolation instructions for the inverters for homeowner, First Responders and maintenance personnel that may work on the system from time to time.
- Inverters listed to UL1741/UL1741SA.
Battery One Line Example

- Only One Utility Disconnect Switch per DG System
- Isolation required on both sides of ESS Production meter
- ADS Opens upon Grid Outage
- Protected Load Panel not normally 24-7 accessible

Automatic Disconnect Switch (internal)

Metering Isolation for maintenance
Peak Shaving

- PV Panels and Critical load panel is not required.
- Normally will have either one or two inverters
- In the event of an outage, the system will shut down
- Multiple configurations available for metering and isolation
- Battery system (via a DC to AC inverter) is programmed to provide a portion of the load draw to the customer’s electric service via CTs and communication circuitry
AC Coupled Systems

• Normally installed in conjunction with a separate PV System.
• Battery System will draw power from the utility to keep batteries charged.
• Essential loads placed in-between PV System and main electric service.
• In the event of an outage: (1) PV system ceases to operate, (2) Isolation Relay opens, and (3) Battery System will power the essential load panel.
• The Battery System metering will be required.
• APS will require a meter and meter disconnects at each system (PV and Battery Back-up).
DC Coupled Systems

- Installations traditionally by Outback Power Systems with UL1008 transfer inherent in the inverter did not require meter disconnect on inverter side.
- This is a one (or two) inverter system with both batteries and panels connected to the inverter (separate DC inputs).
- Backup load panel was traditionally installed as an output to the inverter. Today, other systems connect Backup load panel to an interface device separate from the inverter.
- Inverter DC Disconnect and internal Bypass switch was required to disconnect power to the Backup Load panel.
- In the event of an outage: (1) controller opens automatic disconnect to isolate from the grid, (2) backup loads are powered by the batteries with the PV panels (or optional generator input) charging batteries.
- APS will require Utility Disconnect Switch & Production Meters with Meter Disconnect Switches.
- Meters required would be 2S.
- **NOTE:** Batteries must be fully charged prior to APS Meter-Set.
This is an example of two 2S production meters installed for a 120/240V battery backup system (Outback DC Coupled Type)

- For testing purposes, Customers may provide **electro-mechanical** meters. Meter-sockets shall be labeled per APS requirements
- Each Meter is comprised of a utility energy component and an output circuit component
- APS will change out meters to AMI type metering for remote reads (could occur prior to PTO)
- ACC mandates that APS accounts for all customer owned power production sources that nets out load that otherwise would be served by APS

- Customers shall apply NEC 300.3(B): All conductors of the same circuit (including the neutral and ground) shall be contained within the same raceway, conduit, gutter, cable tray, etc.
Standby Battery Systems

• Installed for backup power only, will not backfeed the APS System.
• Only systems utilizing a transfer switch tested, listed and marked UL 1008 will be considered as a separate system.
• Off-grid and/or other systems not utilizing a UL 1008 listed transfer switch will be required to sign a connection agreement with APS, demonstrate to APS that the system does not backfeed the utility, and will be required to install a visual open Utility Disconnect switch in accordance with Section 4.1 and 8.2 of the APS Interconnection Requirements Manual.
Breaker & Wire Sizing

Breaker Sizing: NEC (2011) 690.8(A)(3), 690.8(B)(1)(a), 240.6(A)

Inverter AC Output Current Rating $\times 1.25$

1Ø: Inverter AC Output Current Rating = Inverter Watts \div Voltage

3Ø: Inverter AC Output Current Rating = $\frac{\text{Inverter Watts}}{\text{Voltage} \times \sqrt{3}}$

Example: 2-8kW Static Inverters in Parallel (120/240V, 1Ø, 3W). Calculate the AC output Current, Determine the correct breaker size and wire.

8kW/240V = 33.3A \times 1.25 = 41.6A
OCPD = 45A (combiner box)

In Parallel

16kW/240V = 66.6A \times 1.25 = 83.3A
OCPD = 90A (back-fed breaker)
Breaker & Wire Sizing (cont.)

Wire Sizing NEC (2011) 690.8(B)(2)

Assume an ambient temp of 105-113⁰F
Temp Correction = 0.87

41.6A (circuit to combiner previous slide)

55A X 0.87 = 47.85A → Use 1-#8 Cu THWN-2 per phase

In Parallel
83.3A (parallel circuit previous slide),
95A X 0.87 = 82.7A < 83.3A
115A X 0.87 = 100A → Use 1-#3 Cu THWN-2 per phase

NOTE: If wire length is less than 10’ OR less than 10% of the run is above ground, then a temperature correction factor may not be required.
Voltage Drop/Rise Calculation

Voltage Drop/Rise Equation

\[V_D = 2 \times \frac{\Omega}{1k\cdot ft} \times L \times A \]

- \(L \) = length of circuit (one-way)
- \(A \) = load amps (inverter output)
- \(\frac{\Omega}{1k\cdot ft} \) = based on conductor from NEC Table 9

Example:
- 85 feet conductor run
- 7.68kW inverter
 - Single phase – 240V
 - 7.68kW/240V = 32A
 - Unity power factor
- #8 CU conductor
 - 0.78 \(\frac{\Omega}{1k\cdot ft} \) from Table 9

\[V_D = 2 \times 0.78 \frac{\Omega}{1k\cdot ft} \times 85 ft \times 32A \]
\[V_D = 4.2V \]
\[V_D\% = \frac{4.2V}{240V} = 1.8\% \]
Voltage Rise Calculation (Cont.)

This voltage drop calculator can be found online. Search for ‘Siemens voltage drop calculator’ on the web.
Fault Current Calculations

- Table 800.2-1 of the APS ESRM provides the worst-case fault current values from the utility utilizing the infinite bus method. (https://www.aps.com/library/esp%20services/800.pdf)
 - Fault tables assume 80% loading and 25’ of conductor length including Ins and Outs (sweeps)
 - Based on lowest impedance values (APS publishes ranges for your use if needed on the APS ESRM website (www.aps.com/esrm)

- A customer is determining fault current value at their DG System Disconnect Switch, the following information is needed:
 - DG System Size (for breaker and conductor validation)
 - Distance from the main service to the disconnect switch
 - Conductor type (wire properties are available via the NEC or Short Circuit Calculation Section out of the Bussman-Eaton manual)

- Add inverter contribution (1.5 times is industry standard, but some modeling programs assume 2 times).

A useful fault current calculation program that APS uses is available via www.mikeholt.com
Example 1: 200A Service @ 120/240 V, 1Φ, 50 foot of #8 Cu, breaker size is 40A, 7500W single phase 120/240 V inverter.

- what is the fault current at the disconnect?
Fault Current Calculations (Cont.)

Example 2: 800A Service @ 277/480 V, 3Φ, 100 foot of #4 Cu, breaker size is 90A, 8-7500W three phase inverters (60 kW).

- what is the fault current at the disconnect?

<table>
<thead>
<tr>
<th>Available Fault Current Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Fault Current</td>
</tr>
<tr>
<td>(I = \text{kVA} \times 1000 = \text{trans. FLA})</td>
</tr>
<tr>
<td>(I_{\text{ac}} = \frac{\text{trans. FLA} \times 100 \times \text{PF}}{\text{transformer Z}})</td>
</tr>
<tr>
<td>(I_{\text{ac}} = \text{ampere short-circuit current RMS symmetrical.})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point to Point Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>('t') factor =</td>
</tr>
<tr>
<td>(N \times C \times E \times L-N)</td>
</tr>
<tr>
<td>(\text{Phase conductor constant})</td>
</tr>
<tr>
<td>(\text{Volt Line to Line})</td>
</tr>
<tr>
<td>(f = 2.445)</td>
</tr>
<tr>
<td>(\text{Neutral conductor constant})</td>
</tr>
<tr>
<td>(\text{Volt Line to Neutral})</td>
</tr>
<tr>
<td>(f = 6.351)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = \frac{1}{1 + f})</td>
</tr>
<tr>
<td>(\text{Line to Line})</td>
</tr>
<tr>
<td>(\text{Line to Neutral})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fault Current at Service Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{ac}} \times M = \text{fault current at terminals of main disconnect})</td>
</tr>
<tr>
<td>L- L =</td>
</tr>
<tr>
<td>L-N =</td>
</tr>
</tbody>
</table>
Common Errors and Violations

1. **Drawings were not per APS Samples**: i.e., block drawings vs. schematic drawings, text not legible at 11X17, etc..

2. **Grounding and bonding issues**: case ground for individual equipment not shown, bond jumpers as required by NEC 250.64(E)(1) & 690.47(C)(3), and supply side connection grounding.

3. **Wire sizing issues**: ensure compliance with NEC 240.4(B), identify insulation and if Cu or Al.

4. **Fault Current Calculations**: APS requires compliance with recently updated ESRM 800.2, NEC Art 110.9 & NEC Art 110.10.
 a. If a fused disconnect is not shown on the line side of the APS required Utility Disconnect Switch, APS will require fault current calculations to verify compliance.
 b. Note that most unfused disconnect switches are rated for only 10k AIC.

5. **NEC and APS Required Labels Missing**: Refer to APS Equipment Labels (Interconnection Requirements & Equipment Labels available via www.aps.com/dg) & various NEC code references. Label references shall be identified on diagrams.

6. **Required Keyed Notes**: APS Engineering will reject applications missing this information Keyed Notes.

7. **Access/Workspace Notes**: Provide 24-hr access, workspace clearance and meter separation between water and gas notes.
8. **Production Meter orientation:** APS requires the Utility Disconnect switch to be located on the line/utility side of the APS production meter.

 If a leasing company production meter is installed, it shall be located on the load/inverter side of the APS required production metering.

9. **Installation prior to approval:** SB 1417 mandates that a distributed energy generation system cannot be *installed, energized, or interconnected* until the utility has approved the application.

10. **Other common issues:**
 a. Wrong size tap kit for supply side connection
 b. Blades for disconnect switches facing the wrong direction
 c. Lack of details and ambiguity on drawings
 d. Missing one line diagram on applications
 e. Terminals on meters not properly shown, line and load side for bi-directional meters missing, missing information on form type, ring type
 f. Combiner panels being labelled as load center
 g. Colored drawings not allowed
Rapid Shutdown of PV Systems

For the 2011 version of the NEC NFPA 70, 690.11 “DC Arc-Fault Circuit Protection” was added to mitigate fire initiation hazards associated with arcing faults, but does nothing to eliminate shock hazards associated with PV power circuits.

- For the 2014 version of the NEC NFPA 70, 690.12 “Rapid Shutdown of PV Systems on Buildings” was added.
- A listed device that controls specific PV System conductors (5’ in length inside a building or 10’ distance from a PV array).
- No specifics as to the location of the rapid shutdown initiating device to allow AHJs, System Integrators and First Responders the flexibility to locate devices and warning labels at location most appropriate for the specific installation.

- Limit of 30 volts and 240 volt-amperes with 10 seconds of initiation.
- **Solar optimizers (DC-DC Contactors)** can be used for rapid shut down (i.e., Tigo Energy retro-fit solution or SolarEdge whole system solution).

- Microinverters or ac modules inherently comply with 690.12 as loss of AC power immediately de-energizes all PV system circuits outside the array areas.
- Warning label in accordance with 2014 NEC 690.56(C).
NEC Code References

- **Six Handle Rule:** NEC 230.71(A)
 - In the event of six disconnects and no main, customer wants to add a 7th breaker for a back-fed device (PV). Some AHJs consider this a violation others consider PV as a separate source and exempt from NEC 230.71(A). Battery systems would not be exempt considering battery charging constitutes a load.
 - **Systems without a main need to consider NEC 230.90(A), Exception No. 3:** The sum of the ratings of CBs/fuses shall be permitted to exceed the ampacity of the service conductors provided the calculated load doesn’t exceed the ampacity of the service conductors. Provide load calculations and panel schedules to APS and consider PV into the calculations.

- **Main Breaker De-Rate:** NEC 230.79
 - If customer is in violation of the 120% Rule [NEC 2017_705.12(B)(2)(3)(b)], customer may de-rate the main in order to accommodate the installation of a PV system. Load calculations will be required by the AHJ and APS prior to de-rating the main breaker. APS can provide 12-month historical load to the customer for calculation purposes [NEC 220.87].
 - Note 12 Month historical Loads are provided in kW. To convert from kW to kVA, we assume a 0.91PF for residential and 0.85PF for commercial.
 - A placard/label is required per APS Requirements.

- **GEC:** NEC 250.66, NEC 250.166
 - For new services, customers shall review APS ESRM 701.0.
 - PV Systems requiring a GEC installed back to the SES, may consider NEC 250.166, 690.47.

- **Non-isolated (Transformerless) Inverters:** NEC 690.47
 - For ungrounded systems, this conductor shall be sized in accordance with 250.122 and shall not be required to be larger than the largest ungrounded phase conductor.
Step Up Xfmr Fault Current Calculations

Example 3: 800A Service @ 120/208 V, 3Φ, 50 foot to utility disconnect switch and production meter, then 50’ to step up XFMR 75 kVA (~128 A of backfeed)

Useful Formulas: \(f_{3\Phi} = \frac{\sqrt{3} \times L \times I_{3\Phi}}{C \times n \times ELL} \); \(M = \frac{1}{1+f} \); \(I_{sc \, RMS} = I_{sc} \times M \);

- \(C = \) conductor constant
- \(n = \) number of conductors per phase
- \(I = \) available short circuit current (in amps)
- \(E = \) voltage
- \(L = \) length of conductor

Step 1: Starting Isc from APS for above configuration is 49,505A

Step 2: install ~ 50’ of 3-1/0 Cu in metallic conduit (\(C = 8925; n = 1 \))

\(f = 2.3607; M = 0.30242, I_{sc} = 14,971 \, A + I_{SCDER} \)

Step 3: install ~ 50’ of 3-1/0 Cu in non-metallic conduit (\(C = 9317; n = 1 \))

\(f = 0.6876 \, M = 0.5925, I_{sc} = 9130.61 \, A + I_{SCDER} \)

Step 4: Step voltage from 120/208V, 3Φ to 277/480V 3Φ; \%Z (75 kVA) is 4.5%

\[
I_{sc} = \frac{V_{start} \times I_{sc \, step \, 3}}{V_{frend}} = \frac{208 \times 0.3363 \times 9130.61 \, A}{480 \, V} = 1330.6 \, A + I_{SCDER}
\]

\[
M = \frac{1}{1+f} = \frac{1}{1+0.3363} = 0.753
\]

\[
f = \frac{I_{sc} \times V_{frend} \times \sqrt{3} \times \%Z}{100,000 \times kV\text{Axfmr}} = \frac{9130.61 \, A \times 208 \, V \times 1.732 \times (4.5)}{100,000 \times 75} = 1.974; M = \frac{1}{1+f} = \frac{1}{1+1.974} = 0.3363
\]

NOTE: Do not forget to add the potential DG contribution to all steps (~ 128 A X 2 = 256 A @ 208 V, and 55.5 A X 2 = 111 A @ 480 V)
Open Delta Transformers

- Installed in older areas of APS service territory (i.e., North-Central Phoenix, Downtown Phoenix, Rural areas, Tempe, Chandler, Paradise Valley and Central Scottsdale)
- Secondary voltage of 120/240V, limited to 25 horsepower motor load and 50kVA 3-phase load
- Comprised of two transformer configuration made up of a power pot and a liter pot.
 - Power pot is where two pole loads can be connected (no center tap neutral on the power pot, so connecting single phase load is not permitted).
 - Liter pot can have a combination of single pole and two pole loads.
 - Three phase loads are connected across all three phases.
 - Customer load is generally not balanced for these configurations.
 - Liter Pot sees 100% of the 1-phase load + 58% of the 3-phase load.
 - Power Pot sees 58% of the 3-phase load
 - APS recommends installing inverters across A-B and A-C. Keep in mind not to over-duty the APS transformers tied across A-B and A-C.
References and Sources for Further Information

APS Commercial Renewables
Phone: (602) 371-6160, email: commercial-renewables@aps.com
web: http://www.aps.com/dg

NEC: National Electrical Code, Section 690 “Solar Photovoltaic Systems”
NEC: National Electrical Code, Section 705 “Interconnected Electric Power Production Sources”
NEC: National Electrical Code, Section 706 “Energy Storage Systems”

“**Understanding NEC Requirements for Solar Photovoltaic Systems**” – Mike Holt

IEEE Std 1547-2018: IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems Interfaces

IAEA: A Closer Look at Batteries, John Wiles – 09/16/2013

Eaton/Bussman Short Circuit Analysis – 2017 Application Guide

APS Requirements:
1. APS “Interconnection Requirements for Distributed Generation” https://www.aps.com/dg
2. APS “Electric Service Requirements Manual” (ESRM)