APS Solar Partner Program (SPP)
Phase II – Lessons Learned

Wednesday April 24th, 2019
Daniel A. Haughton, Ph.D.
Overview

• APS/EPRI SPP Phase II
 – Utility voltage control
 – Battery storage system (2MW/2MWh)
 – Voltage, power factor, grid operations
 – High penetration PV
APS SPP Phase II - Lessons Learned

<table>
<thead>
<tr>
<th>BATTERY</th>
<th>GRID OPS</th>
<th>HUMAN INTERFACE</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement based battery dispatch preferred over scheduled</td>
<td>Low VAR flow, not power factor, should be the goal</td>
<td>Need to simplify battery-grid operator interface</td>
<td>Clear requirements RFP test reports and extensive FAT are necessary</td>
</tr>
<tr>
<td>BESS downstream of feeder constraint offers most value (even smaller sizes)</td>
<td>Clearly set voltage control priorities to eliminate potential conflict</td>
<td>Extensive operator training / change management are necessary</td>
<td>Battery inverters will need to follow IEEE 1547 advanced functionality</td>
</tr>
<tr>
<td>Direct communication path with low latency for effective response</td>
<td>Utility devices for large voltage change, then inverter for smoothing</td>
<td>Standardize MW and VAR flow reference directions</td>
<td>Routine operations, daily dispatch and optimization should be automated</td>
</tr>
<tr>
<td>Draw losses from the grid-side to preserve battery capacity</td>
<td>Only load transfer can resolve voltage issues when BESS and VVO cannot</td>
<td>Alarm prioritization and management with mitigation is recommended</td>
<td>Engineering time series study prior to implementation (charge / discharge)</td>
</tr>
</tbody>
</table>
Battery Operation

• Measurement Based vs Scheduled Dispatch
 – Measurement based preferred
 – Consistent peak reduction
 – Highest energy deferral
 – Requires reasonable load shape forecast assumption

• Use direct measurement communication path
 – Low latency and response time
 – Direct more robust in various operating scenarios
 – Lower comm loss probability
Battery Operation

• Locate battery downstream of feeder constraints
 – If ahead, no deferral possible
 – Distributed closer to loads

• Draw inverter losses from the grid (not the battery)
 – When idle, energy is lost
 – Affects desired objectives
Grid Operation & Impacts

- Manage feeder VAR flow, not power factor
 - BESS inverter managing VARS / PF hold to min targets
 - Utility voltage control managing voltage / VARS / PF hold close to 1
Grid Operation & Impacts

- Utilize utility voltage control for large changes
- Clearly set voltage priorities to eliminate conflict

Less variability – closer to 1.0
Grid Operation & Impacts

- Battery only doing voltage control
 - Less variability than baseline

- Utility capacitors and regulators doing voltage and PF control
 - Less variability than baseline, higher overall system voltage profile

- Battery, capacitors and regulators doing voltage and PF control
 - Minimum variability with best voltage profile
Human-Machine Interface

• Data intensive application
 – Simplify battery interface for operators
 – Automate dispatch decisions
 – Ease of operation important
 – Complex technology with many functions

• Batteries operate as both load and generation
 – Convention (lingo) must be standard
 – Injecting or absorbing both MW and MVAR
 – ... also performs voltage control
Human-Machine Interface

- Extensive training is required
 - New technology, not extension of existing
 - Capabilities that do not exist elsewhere

- Alarms can be overwhelming
 - Especially during disturbance, operators need guidance on what to do, not just system states
Other Lessons Learned

• Clear requirements and expectations up front
 – Alignment on expected operating conditions
 – Alignment on technology capabilities
 – Test and verify system details prior to installation
• Battery inverters will need to align to IEEE 1547
 – They may or may not today
 – Outlines Volt/VAR, voltage and frequency ride-thru
 – Communication and control parameters
• Automate routine and simple functions
• Time series studies to understand daily dispatch
Intermediate Feeder Energy Storage

• Delivered scope
 – 1 x 380 kW
 – 2 x 507 kW
 – Total capacity 1.39 MW

• Use cases
 – Thermal load management
 • Charge from PV
 • Shave peak
 – Voltage management
 • Not intended to replace capacitor (1200 kVAr)
 • Feeder capacitors retrofit with 1-phase controls
 • Inverter / capacitor inter-operability and fine-tune voltage control
Peak Day
Batteries operating at full and ½ capacity

Reduces summer peak
Minimum Load Day (Max PV Output)

Batteries operating at full and $\frac{1}{2}$ capacity

- Base
- W/ IFES 1C
- W/ IFES 0.5C

- Reduces spring peak (small benefit)
- Increases feeder minimum load
QUESTIONS?
Other Examples with SPP

- Solar Partner Program BESS
 - Feeder peak demand shaving
 - Demand profile shaping
 - High PV penetration circuits
 - Feeder voltage control and VVO integration
 - VVO interoperability
 - Capacitors and regulators
 - Advanced inverters
 - BESS inverters
7 MW limit is arbitrary (for testing only)

- Missing the peak (left)
- Charging right after peak (right)