

APS RPAC Meeting

3/23/2022

MEETING AGENDA

Welcome & Meeting Agenda Matt Lind 1898 & Co.

APS Customer Programs Daniel Haughton Director, Customer to Grid Solutions

RFP Review Process Matt Lind 1898 & Co.

2020 ASRFP Update Jill Freret Director, Resource Acquisition

All-Source RFP Industry Trends Lakshmi Alagappan E3

Discussion & Next Steps Matt Lind 1898 & Co.

RFP Evaluation Process Matt Lind 1898 & Co.

February RPAC Meeting

- E3's Southwest Resource Adequacy Study determined that utilities in the Southwest have adequate resource additions in their resource plans to meet electricity demand through 2033. Meeting resource adequacy needs is contingent on historical resource procurement rates that emphasize the need to move quickly and efficiently on resource procurement.
- APS resource needs through 2027 are driven by load growth, resource retirements, and contract roll offs. The specific size of the need will be finalized once the negotiation of contracts from the 2020 RFP is complete.
- APS will provide a draft RFP document and evaluation criteria that targets resource needs between 2025 and 2027. RPAC members will be encouraged to provide feedback on RFP language and bid evaluation criteria.

- Action Items from previous meetings:
 - RFP Survey updated and emailed for feedback
 - Provide example of RFP scoring criteria and weightings
 - Complete introduction calls
- Ongoing Commitments:
 - Distribute meeting materials in a timely advance fashion (3 bd prior)
 - Transparency and dialogue

Meeting Guidelines

- RPAC Member engagement is critical. Clarifying questions are welcome at any time. There will be discussion time allotted to each presentation/agenda item, as well as at the end of each meeting.
- We will keep a parking lot for items to be addressed at later meetings.
- Meeting minutes will be posted to the public website along with pending questions and items needing follow up. We will monitor and address questions in a timely fashion.
- Consistent member attendance encouraged; identify proxy attendee for scheduling conflicts.
- Meetings and content are preliminary in nature, and prepared for RPAC discussion purposes. Litigating attorneys are not expected to participate.
- **Today**: Certain RPAC Members are excused from entirety of today's meeting due to potential resource development interests.

RFP Review Process

After receiving the Draft RFP document... What next?

- **DO NOT** share document
- RFP document includes:
 - Overview
 - Process and Schedule
 - Eligibility Requirements
 - Evaluation Process
 - Miscellaneous Information
- Example topics for feedback
 - Schedule
 - Participation requirements (size, etc.)
 - Evaluation (process and criteria)

RPAC RFP Feedback Timeline

- March 23rd: Today
- March 25th: Volunteer¹! Final day to register for detailed RFP review subgroup
- April 1st: First working group RFP review session
- April 11th: Second working group RFP review session
- April 15th: Finalize feedback prior to April RPAC Meeting
- April 20th: April RPAC Meeting
- Late April/Early May: RFP Release

¹Please e-mail <u>RPAC@aps.com</u> with your interest. **1898**

All-Source RFP Industry Trends

All-Source RFPs Allow a Broad Range of Resources to Compete to Fill a Need

All-Source RFP Process

Limited-Resource RFP Process

Figure adapted from All-Source Competitive Solicitations: State and Electric Utility Practices (LBNL, 2021)

Energy+Environmental Economics

All-Source RFPs often have DSR sub-procurements

+ To procure demand side resources (DSRs), utilities often carve out a separate DSR RFP alongside a grid-scale all-source RFP or develop a set of customer programs to fill a portion of the specified need

- E3 performed a review of several all-source RFPs to benchmark key RFP elements, including participation and evaluation criteria, to inform APS' development of its own all-source RFP
- + E3 reviewed 15 recent all-source RFPs that varied in:
 - Year issued
 - Amount of need
 - Type of need
 - Eligible resources
 - Geography

RFP	Year	Capacity Needed (MW)	Eligible Resources	Products Requested
Xcel, CO	2017	1,100	Solar, Wind, Natural Gas	Capacity, Clean Energy
El Paso Electric (TX, NM)	2017	370	Solar, Storage, Natural Gas	Capacity
NIPSCO, IN	2018	1,485	Solar, Wind, Storage, DSRs	Capacity
Western Farmers Electric Coop, OK	2019	100	All technologies	Capacity
Hawaii Electric Company, HI	2019	300-400	Zero-carbon, Storage, DSRs	Capacity, Clean Energy
AES Indiana, IN	2019	200	Solar, Wind, DSRs	Capacity
Vectren, IN	2020	700	Solar, Wind, Storage, Gas, EE	Capacity, Clean Energy
Pacificorp (Pacific NW)	2020	1,110	All technologies	Capacity
PG&E, CA	2021	2,801	Zero-carbon, Storage, DSRs	Capacity, Clean Energy
Portland General Electric, OR	2021	375	All technologies	Capacity, Clean Energy
Puget Sound Energy, WA	2021	1,506	All technologies	Capacity, Clean Energy
SDG&E, CA	2021	439	Zero-carbon, Storage, DSRs	Capacity, Clean Energy
El Paso Electric, NM	2021	335	Renewable, Storage DSRs	Capacity
Salt River Project, AZ	2021	1,000	All technologies	Capacity
Pacificorp (Pacific NW)	2022	900	Solar, Wind, Storage	Capacity

Evaluation process includes multiple steps

Evaluation process narrows the pool of prospective bidders through a number of steps, culminating with contract negotiations and execution

Step 1. Review bids for minimum participation criteria Participation Criteria Comparison

RFP	Year	Capacity Needed (MW)	Eligible Resources	Minimum Bid Size (MW)	Minimum Contract Length (yrs)	Bid Fee (\$/application)	COD years after RFP	
Xcel, CO	2017	1,100	Solar, Wind, Gas	0.1	1+	\$ 375-10,000	3-5	
El Paso Electric, TX	2017	370	Solar, Storage, Gas	5	20+	\$ 2,500	5-6	
NIPSCO, IN	2018	1,485	Solar, Wind, Storage, DSRs	15	10+	\$ 5,000	4	
AES Indiana	2019	200	Solar, Wind, DSRs	5	10+	\$ 5,000	6	
Nevada Energy	2019	600	All technologies	25+		\$ 10,000	4	
Vectren, IN	2020	700	Solar, Wind, Storage, Gas, EE	12.5 for storage 50 for renewables	12+	\$ 5,000	3-4	
Pacificorp (Pacific NW)	2020	1,110	All technologies	20	15+	\$10,000*	3-4	
PG&E	2021	2,801	Zero-carbon, Storage, DSRs	10	0 10+		2-5	
Portland General Electric, OR	2021	375	All technologies	10	10+	\$ 10,000	4	
Puget Sound Energy, WA	2021	1,506	All technologies	5	5+	\$ 2,500-10,000	4	
SDG&E	2021	439	Zero-carbon, Storage, DSRs	5	10+	N/A**	2-5	
El Paso Electric (TX, NM)	2021	100	Renewable, Storage DSRs	5	1+	\$ 2,500	4	
Salt River Project, AZ	2021	1,000	All technologies	25	5+	\$ 10,000	3-5	
Pacificorp (Pacific NW)	2022	900	Solar, Wind, Storage	20	15+	\$ 5,000-15,000	4	

*Pacificorp 2020 offers bidders up to 3 alternatives for the same project at \$3,000/alternative

**SDG&E does not have a bid fee but a shortlist acceptance fee; greater of \$100,000 or \$2/kW is the shortlist acceptance fee

Step 1. Review bids for minimum participation criteria **Participation Criteria Comparison**

from 5-20MW in the RFPs

need. Utilities use shorter contracts to sign existing generators to meet near-term needs

size of need or minimum bid size except for several cases of tiered bid fees tied to project size

from 2-6 years depending on the utilities' near-term capacity or energy needs

reviewed

Step 2. Screen bids using cost and non-cost criteria to create a shortlist **Examples of Screening Evaluation Criteria**

Cost Criteria	Non-Cost Criteria	Description	
Levelized Cost of Energy	Renewable/Carbon-Free Attributes	Ability to provide zero-carbon attributes	
Levelized Cost of Capacity	Policy Compliance	Resource alignment with state or federal policies	- Alignment - with utility's
	Resource Operating Constraints	Utility's specific operational characteristics preferences	
Carbon Cost	Energy Delivery Risk	Limits on energy delivery due to transmission constraints]
Fuel Cost	Technology Readiness	Maturity of the technology	—
Transmission Upgrade Cost	Site Control / Permitting	Current status of project site and status of permits	Project
Integration Cost	Interconnection Status	Status of interconnection agreement or studies	
Clean Attribute Credits	Supply Chain + Online Date Certainty	Ability to guarantee power delivery by specified COD	
	Developer Experience	Measured in years	
	Developer Creditworthiness	Typically measured in standards ratings	─
	Environmental Impact	Impact on air, water, light, noise, etc.	
	Land Use Impact	Impact on habitats, natural lands, and other sensitive locations	Environmental, Equity, and Community
	Equity and Community Impact	Impact on equity and local communities	

Step 2. Screen bids using cost and non-cost criteria to create a shortlist **Screening Evaluation Criteria**

Utility's RFP Criteria weights for cost- vs non-cost criteria (%)

Step 2. Screen bids using cost and non-cost criteria to create a shortlist **Screening Evaluation Criteria**

- Of the RFPs reviewed, 6 utilities (8 RFPs) provided transparent cost and non-cost weights
- + Cost criteria make up the majority of evaluation (50-85%)
- Within non-cost criteria, utilities typically give higher weight to bidder experience and delivery date certainty

Utility's RFP Criteria weights for cost- vs non-cost criteria

Step 3: Evaluate short list of bids using portfolio analysis Portfolio Analysis Approaches

- Utilities use several approaches to determine lowest cost combination of bids to meet their needs
 - Price-taker approach
 - Assumes resource doesn't change market prices; uses energy, ancillary service, and capacity market price forecasts to calculate resource's market value

Production cost approach

- Uses production cost dispatch simulation modeling to capture impacts of each resource, or combination of resources, on a utility's portfolio costs
- Can capture integration and flexibility costs explicitly
- Capacity expansion approach
 - Uses least cost optimization modeling to select the lowest cost combination of bids to meet utility needs
 - Can capture integration and flexibility costs explicitly

+ Renewables and storage are becoming increasingly cost competitive

- Larger projects are being selected due to economies of scale in cost
- Targeted DSR procurements and programs have driven higher DSR penetration than competition in broader all-source RFPs
- + All-Source RFP evaluation criteria vary across utilities, but most prioritize low cost and low project delivery risk to ensure timely availability of resources to meet specified needs at lowest cost

Resource additions by COD year from RFPs reviewed Nameplate MW

Discussion & Questions

RFP Evaluation Process

- Process that is
 - Objective
 - Fair
 - Flexible to diverse resources
- Open to <u>all</u> commercially viable resource(s) and technologies
- Prioritizes reliable and affordable proposals that enable clean energy commitments

Proposal Evaluation Process

- 1. Review for minimum requirements
- 2. Screening on qualitative and quantitative factors
- 3. System-level portfolio evaluation
- 4. Negotiate with shortlist

1898

RPAC RFP Questionnaire Responses

- Total Responses: 6
- Ranking of prescribed criteria categories based on respondent weightings
 - 1. Alignment with Need(s)
 - 2. Cost to Customer
 - 3. Project Specific Risk(s)
 - 4. Counterparty Risk(s)
- Other criteria suggested for evaluation: social consequences, project cost, technology maturity, reliability, environmental considerations, residential health, return on investment.

Preliminary – For Discussion Purposes

Screening Evaluation: Criteria and Weightings

- Cost (50%)
- Resource Alignment (25%)
- Risk(s) (25%)

Preliminary – For Discussion Purposes

Screening Evaluation: Criteria Development

- Cost
 - Reliable Levelized Cost of Capacity
 - Levelized Cost of Energy
- Resource Alignment
 - Deliverability
 - Renewable/Carbon Intensity
 - Load Factor Impacts
 - Dispatchability
 - Ramp Rates
- Risk(s)
 - Site Control
 - Supply Chain
 - Respondent Experience
 - Safety Record
 - Technology Risk
 - Creditworthiness

Criteria must connect to measurable targets.

Targets may reflect binary conditions or range of acceptance.

Discussion & Questions

APS Customer Programs

Who Works on DSM Programs at APS

Planning

Customer to Grid Solutions (C2GS) Product Development

Program Delivery

□C2GS Customer Solutions/Customer Programs Teams

Outreach/Support

□APS Staff

Marketing, customer research, resource planning, communications, public relations, call center, aps.com, legal, regulatory, key accounts, community representatives

Program Implementation Vendors

DNV GL, CleaResult, EnergyHub, Uplight, Oracle Opower, Enervee

Third Party Evaluation

✤Guidehouse

DSM Guiding Principles

Create programs with mutual shared value

Align customer programs to system resource needs

Provide meaningful customer education

Provide tools that enable savings on modern rates

Clean

Reducing emissions by saving energy and shifting load to match renewable generation

Affordable

Lowering costs for all customers by reducing peak demand and flattening load shapes

Reliable

Reliable and measurable load flexibility including consistent, system-wide peak load reductions and improved integration of solar resources

Customer focused

Customers are motivated by incentives and the ability to maintain low electricity rates and minimize grid's environmental impact

2022 DSM Program Portfolio

	Annual Coincident Demand	Annual Savings at	Lifetime Energy		Cost Test	Cost Test Costs		Lifetime Net		
Program	Savings at Generator (MW)	Generator (MWh)	Savings (MWh)		Benefits (\$)		(\$)		Benefits (Ș)	
RESIDENTIAL										
Existing Homes	47.1	39,598	534,824	\$	29,407,280	\$	15,571,095	\$	13,836,185	
Residential New Construction	20.7	32,155	621,192	\$	22,383,887	\$	17,328,421	\$	5,055,465	
Multi-Family Energy Efficiency	3.5	10,569	194,370	\$	4,806,122	\$	3,989,157	\$	816,965	
Limited Income Weatherization	2.1	4,061	73,098	\$	5,337,798	\$	4,007,657	\$	1,330,141	
Conservation Behavior	38.5	77,319	152,721	\$	6,793,858	\$	3,178,692	\$	3,615,166	
Energy Storage Pilot	1.5	0	0	\$	-	\$	-	\$	-	
Shade Trees	0.2	669	20,059	\$	347,263	\$	278,394	\$	68,869	
Totals for Residential	113.6	164,372	1,596,264	\$	69,076,208	\$	44,353,417	\$	24,722,791	
NON-RESIDENTIAL										
Existing Facilities	30.1	102,644	1,492,789	\$	40,289,039	\$	22,920,156	\$	17,368,882	
New Construction and Major Renovation	15.7	65,485	925,751	\$	23,398,006	\$	14,038,428	\$	9,359,578	
Energy Information Services	5.8	5,616	28,079	\$	2,200,265	\$	639,601	\$	1,560,664	
Schools	6.2	24,445	316,411	\$	8,521,564	\$	4,995,570	\$	3,525,995	
ARC Pilot	3.3	8,790	103,369	\$	-	\$	-	\$	-	
Totals for Non-Residential	61.1	206,979	2,866,398	\$	74,408,874	\$	42,593,755	\$	31,815,119	
DEMAND SIDE MANAGEMENT INITIATIVES										
Demand Response	57.8	0	0	\$	-	\$	-	\$	-	
Energy Storage and Load Management ("Rewards")	215.7	66	66	\$	-	\$	-	\$	-	
Building Code and Appliance Standards	5.4	26,960	238,102	\$	-	\$	-	\$	-	
APS System Savings	0.0	6,020	90,294	\$	-	\$	-	\$	-	
Managed EV Charging Pilot	2.1	363	3,634	\$	-	\$	-	\$	-	
Energy and Demand Education	0.0	0	0	\$	-	\$	-	\$	-	
Peak Rewards	0.0	0	0	\$	-	\$		\$	-	
Tribal Community Energy Efficiency	0.1	242	3,472	\$	-	\$	-	\$		
Totals for Demand Side Management Initiatives	281.2	33,652	335,569	\$	-	\$	-	\$	-	
TOTAL	455.9	405,002	4,798,230	\$	143,485,082	\$	86,947,172	\$	56,537,910	

2021 DSM Achievements Overview

DSM Support <u>\$52.5 million</u>

\$7.9 million for Limited Income

• EE Savings <u>319,000 MWh</u>

Achieved >95% of 2021 DSM Goal
127,000 MWh higher EE than 2020
Cumulative = 24.8% of 2020 sales

Peak Demand Savings <u>272 MW</u> 113 MWs from Cool Rewards

- Launched many new Program Offerings for Customers
- Issued DDSR Aggregation RFP

DSM Programs – Residential Highlights

Limited Income Weatherization

Record year in 2021 \$7.9M spent upgrading 835 homes

Existing Homes

- □ Launched connected water heating controls
- Continued higher HVAC incentives for COVID
- □ 73% of MWh goal

New Homes

- Launched 3 new measures: ducts in conditioned space, connected water heaters, EV pre-wire
- Earned ENERGY STAR Partner of the Year Award in 2021 & under consideration for 2022

Multi Family Homes

- Launched new Connected Water Heating
- □ 1.2 MWs Peak Demand

DSM Programs – Commercial Highlights

Solutions for Business New and Existing Facilities

- Launched 3 new measures
- 166,000 annual savings and 2.5MM lifetime MWhs

Schools

- Can also participate in Existing Facilities program and ARC pilot
- 112 projects, 25 participating school districts, and 18 free energy audits

• (New) Advanced Rooftop Controls Pilot

- Promoted through 10 trade ally trainings, webinars and email campaigns to eligible customers
- 3 Completed projects, 2 School Districts and 1 Non-profit facility

Energy and Demand Education

Customer Education Delivery Channels

- Online Marketplace
- Virtual Energy Check-Ups
- Online Energy Audits/Resources/Tools
- Energy Tips Education/Outreach
- Field Events Team

Participation

- 600,000 unique visits to Marketplace
- 33,100 smart t-stat DR Pre-Enrollment
- 23,500 online energy audits completed
- 19,100 free LED kits (76,400 bulbs)

39 Subj ect to Chan ge – For

Conservation Behavior – 2021 Results

Savings

- 45,000 annual, 45,000 lifetime MWhs
- 42.6 MWs peak demand
- 64% of annual MWh goal

Program Delivery

- Launched Plan Coach with TOU and non-TOU rate plan customers
- Launched Spanish language Home Energy Reports
- New low/no cost tips for LMI households

Participation Summary

- 1,250,000 email reports
- 1,043,000 printed reports
- 2,576,000 TOU plan coach emails
- 228,000 Non-TOU plan coach emails
- >35,000 customers visited program web pages
- 464,000 total program participants

Conservation Behavior – Plan Coach

© 2011 - 2013 Oracle. All rights reserved.

41

patterns and where you can use less.

Conservation Behavior – October 2021 Customer Survey

Summary of Key Findings:

TOU Plan Coach is improving customer comprehension and satisfaction with their rate plan.

Compared to non-recipients, APS customers receiving TOU Plan Coach communications are:

- +14% more likely to be satisfied with their rate plan
- +10% to +14% more likely to know when on-peak hours start or end
- +9% more likely to know how to reduce their usage during on-peak hours
- +11% more likely to report energy shifting behavior

The TOU Plan Coach program is improving customer satisfaction with APS.

Compared to non-recipients, customers receiving TOU Plan Coach communications rate APS higher:

- +8% increase in overall satisfaction; -7% reduction in overall dissatisfaction with APS
- +9% "APS makes an effort to help me manage my monthly energy usages" (JD Power Price metric)
- +10% "APS creates messages that get my attention" (JD Power Comms metric)
- +10% "APS keeps customers informed about what they are doing to keep energy costs low" (JD Power Comms metric)

Copyright © 2021, Oracle and/or its affiliates

Demand Response/Rewards

Cool Rewards

- 57,000 participating thermostats
- 113 MW peak hour impact
- Called 7 successful events
- 60,583 thermostats enrolled as of 3/15/2022
- Saved approximately 80MW during its peak hour in Summer 2021

Peak Solutions C&I

- 68 enrolled customers
- 28 MWs peak hour impact
 - Lower than contracted due to COVID
- Called 7 successful events

Cool Rewards Program Delivery

- Doubled participation in 2021!
- Largest T-Stat DR capacity addition in the US*
- Free thermostat promos leverage OEM discounts
- DR device pre-enrollment

Instant rebates & discounts on smart thermostats at APS Marketplace

*according to program partner data

1MM+ residential customers

Started with BYOT, transitioning to full scale DER aggregation

<u>~~</u>

System and feeder targeted load reduction

System and feeder voltage support

Renewable integration

On-demand capacity

Average emissions intensity is lower in the mid-day for all months in 2024.

45

Cool Rewards Smart T-Stat DR Emissions Reduction

With pre-cooling, consumption is shifted to the mid-day when emissions intensity is lowest, resulting in a net impact of -.31 kg CO2 per customer.

Weekday Non-Nest Event

-- CO2 Emissions Intensity (kG/MWh - secondary axis)

Cool Rewards Smart Thermostat Demand Response Events

Multiple load curves to meet multiple needs

- Thermostat Capabilities
- Customer Comfort
- TOU Rates Interaction
- Resource Value
- Decarbonization Value

(New) Residential Battery Pilot

- \$3 million, 3-year pilot launched in October
- Incentives for newly purchased battery systems
 - Data share: \$500/kW up to \$2,500 maximum per home
 - **Capacity share:** Additional \$1,250 per home
- BYOD design provides customer choice
- Current battery partners include EnPhase, SolarEdge, Tesla (added February 2022)
- 18 applications received to date

EV Load Management

• EV Data –

Launched new EV data pilot in November to collect info on baseline charging patterns

Customer incentives

\$25 sign-up; \$5/month855 cars enrolled to date!

• EV Chargers –

New \$250 rebates for ENERGY STAR[®] Level 2 connected EV smart chargers launched in December

Background on Decision No. 77855

- APS was ordered to file a tariff that permits and provides compensation for the aggregation of distributed energy storage and distributed demand-side resources
- Calls for the valuation of operating characteristics and various DDSR technologies
- Provide a process to incorporate stakeholder feedback before submitting the proposed tariff

Value Streams

- Capacity
- Demand Reduction
- Load Shifting
- Locational Value
- Voltage Support
- Ancillary and Grid Services

Technologies

- Connected Smart Thermostats
- Water Heating Controls
- Pool Pump Controls
- Managed EV Charging
- Electric Batteries
- Building Energy Management System

2021 All-DDSR RFP

APS requested proposals for multiple grid services

APS received 12 total bids from six bidders, with at least two bids for each of these services

RFP Preliminary Selection

- Selected three products
 - $\square Product A = 5 MW system capacity$
 - **Product B** = 2.5 MW on 6 feeders
 - $\square Product C = 5 MW ancillary services$
- All three grid services products will be provided by aggregating residential batteries
- Anticipating services to be delivered starting in early 2023

2022 DSM Plan Overview

Uses recently approved 2021 DSM Plan as starting point

 Continues all current programs
 Includes all new measures/modifications
 Adds DR savings – Peak Solutions, Cool Rewards, Storage

Adds EE savings – targeting 1.4% level in 2022

2022 DSM Plan Focus Areas

Increased DR

- Residential Energy Storage Pilot
- Peak Solutions Expand from ~28 MWs to 45 MWs
- Cool Rewards Expand from 113 MWs to >150 MWs

Increased EE Savings

- Non-Res Existing Facilities, New Construction, Schools
- 15 New Non-Res measures
- Smart thermostats, HVAC replacement
- Conservation behavior programs HERS expansion, Behavioral DR
- Credit for iDSM measures (EE + DR + load shifting)
- Equity Limited income, MF, Schools, Tribal Communities
- Shade Trees program targeted to disadvantaged communities

Recent Nominations/Awards

ELECTRIC POWER RESEARCH INSTITUTE

ESTABLISHED 1969

Discussion & Questions

2020 ASRFP Update

- Transactions represent a balanced portfolio of third-party PPA and APS ownership with focus on clean, reliable, affordable resources to serve our customers
- Contracts blend mature and emerging technologies and have been executed with large, experienced developers
- Commercial headwinds are significant (supply chain constraints, rising prices, regulatory and legislative uncertainty)
- Currently negotiating 3 additional transactions
 - Solar + storage totaling 513 MW
- Transactions are tied to APS's Green Power Partners (GPP) program, which enables large customers to meet their sustainability goals; benefits APS and all customers by advancing clean energy projects through premium payments made by participating large customers
- Intend to execute contracts before issuing the 2022 ASRFP

Observations

- Bidders are interested in understanding scoring criteria (we will provide additional transparency in this regard in the 2022 RFP)
- Critical to get a firm understanding of counterparty and project risk in the current commercial environment; project delays have become the norm – must contract with those most likely to be successful
- Prices are extremely volatile; suppliers and counterparties willing to hold price for only short periods of time, and increasingly negotiating indexbased pricing
- Counterparties pushing hard to expand bounds of Force Majeure as a result of pandemic impacts and uncertainty of future deliveries
- Counterparties are very concerned about our regulatory environment
- Time is of the essence in order to lock in schedule and price

Discussion & Questions

Open Discussion & Next Steps